• Title/Summary/Keyword: Area under curve

Search Result 1,254, Processing Time 0.035 seconds

Alleviating Effects of Mulberry Fruit Extract on Postprandial Hyperglycemia in Streptozotocin-induced Diabetic Mice (STZ으로 유도된 당뇨 마우스에서 오디열매추출물의 식후 고혈당 완화 효과)

  • Choi, Kyung Ha;Kang, Ji-Hye;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.921-927
    • /
    • 2016
  • Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. The alpha-glucosidase inhibitors regulate postprandial hyperglycemia by impeding the rate of carbohydrate (such as starch) digestion in the small intestine. This study was designed to investigate the inhibitory actions of mulberry fruit extract (MFE) on α-glucosidase and α-amylase activities, and its alleviating effect on postprandial hyperglycemia activities in vitro and in vivo. Male four-week old ICR mice and streptozotocin (STZ)-induced diabetic mice were treated with mulberry fruit extract. MFE showed strong inhibitory effects against α-glucosidase and α-amylase activities, with half-maximal inhibitory concentration (IC50) values of 0.16 and 0.14 mg/ml, respectively, and was more effective than acarbose, which was used as a positive control. The increase in postprandial blood glucose levels was more significantly attenuated in the MFE-administered group mice than in the control group mice of both STZ-induced diabetic and normal mice. Moreover, the area under the glucose response curve significantly decreased following MFE administration in diabetic mice. These results indicate that MFE may be a potent inhibitor of α-glucosidase and α-amylase, and helpful in suppressing postprandial hyperglycemia in diabetic mice. The mulberry fruit extracts may be considered as a potential candidate for the management of diabetes.

Pharmacokinetics of Paclitaxel in Rabbits with Renal Failure Induced by Folic Acid (신장장애 가토에서 파크리탁셀의 약물동태)

  • Jung, Eun Jung;Gwak, Hye Sun;Choi, Jun Shik;Lee, Jin Hwan;Li, Xiuguo
    • Korean Journal of Clinical Pharmacy
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2002
  • The pharmacokinetics of intravenous paclitaxel (1 mg/kg) were investigated in rabbits with renal failure induced by folic acid. The area under the plasma concentration-time curve from time zero to time infinity (AUC) of paclitaxel was significantly (p<0.05) greater in rabbits with severe renal failure induced by folic acid $(1030\pm382)$ compared to that in rabbits with in moderate renal failure induced by folic acid $(780\pm209\;ng/ml{\cdot}hr)$. The apparent volume of distribution (Vd) $(0.008\pm0.002\;L/kg)$ and the elimination rate constant $(\beta)\;(0.09\pm0.025\;hr^{-1})$ of paclitaxel in rabbits with severe renal failure were significantly (p<0.05) smaller and slower respectively than those of control rabbits $(0.016\pm0.004\;L/kg,\;0.12\pm0.03\;hr^{-1})$, but not significantly different compared with that in rabbits with moderate renal failure $(0.010\pm0.003\;L/kg,\;0.10\pm0.026\;hr^{-1})$. total body clearance (CL) of paclitaxel in rabbits with severe renal failure $(0.97\pm0.183\;L/hr/kg)$ was significantly (p<0.05) slower than that in control rabbits $(1.68\pm0.440\;L/hr/kg)$, but not significantly different compared with that in rabbits with in moderate renal failure $(1.28\pm0.311\;L/hr/kg)$. The terminal half-life ($t_{1/2}$) of paclitaxel in rabbits with severe renal failure $(7.46\pm2.16\;hr)$ was significantly (p<0.05) longer than that in control rabbits $(5.75\pm1.44\;hr)$, but not significantly different compared to that in rabbits with moderate renal failure rabbits $(6.67\pm1.76\;hr)$. The above data could be at least partly decrease in due to paclitaxel excretion in rabbits with renal failure, since $7-15\%$ of interavenous paclitaxel was excreted via kidney as unchanged forms plus its metablites.

  • PDF

Clinical Pharmacokinetics of Vancomycin in Ovarian Cancer Patients (난소암 환자에서 반코마이신의 임상약물동태)

  • Kim, Yang Woo;Choi, Jun Shik;Lee, Jin Hwan;Park, Jae Young;Choi, Byong Chul;Burm, Jin Pil
    • Korean Journal of Clinical Pharmacy
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • The purpose of this study was to determine pharmacokinetic parameters of vancomycin using the compartment model dependent and compartment model independent analysis in 6 Korean normal volunteers and 8 ovarian cancer patients. Vancomycin was administered 1.0 g bolus by IV infusion over 60 minutes. The elimination rate constant ($\beta$), volume of distribution (Vd), total body clearance (CLt), and area under the plasma level-time curve (AUC) of vancomycin in normal volunteers using the compartment model dependent analysis were $0.150\pm0.030\;hr^{-1},\;32.9\pm2.81\;L/kg,\;5.36\pm0.63\;L/hr,\;and\;186.5\pm20.5\;{\mu}g/ml{\cdot}hr$, respectively. The $\beta$, Vd, CLt, and AUC of vancomycin in ovarian cancer patients using the compartment model dependent analysis were $0.109\;0.008\;hr^{-1},\;41.5\pm3.01\;L/kg,\;4.58\pm0.57\;L/hr\;and\;218.3\pm22.9\;{\mu}g/ml{\cdot}hr$, respectively. There were significant differences (p<0.05,\;p<0.01) in $\beta$, Vd, CLt, and AUC between normal volunteers and ovarian cancer patients. The elimination rate constant (Kel), CLt, and AUC of vancomycin in normal volunteers using the compartment model independent analysis were $0.152\pm0.022\;hr^{-1},\;5.77\pm0.75\;L/hr,\;and\;173.2\pm22.5;{\mu}g/ml{\cdot}hr$, respectively. The Kel, CLt, and AUC of vancomycin in ovarian cancer patients using the compartment model independent analysis were $0.126\pm0.012\;hr^{-1},\;4.96\pm0.55\;L/hr,\;and\;201.7\pm25.6;{\mu}g/ml{\cdot}hr$, respectively. There were significant differences (p<0.05, p<0.01) in Kel, CLt, and AUC between normal volunteers and ovarian cancer patients. And also, there was significant difference (p<0.05) in Kel of vancomycin in ovarian cancer patients between the compartment model dependent and independen analysis. It is necessary for effective dosage regimen of vancomycin in ovarian cancer patient to use these population parameters.

  • PDF

Effect of $SLCO1B1^*15$ on Pravastatin Pharmacokinetics: A Systematic Review and Meta-analysis (프라바스타틴에서 $SLCO1B1^*15$의 약동학적 영향: 체계적 고찰 및 메타분석)

  • Kim, Jong Yoon;Nakagawa, Naoto;Yoon, Hyonok;Chun, Pusoon;Rhew, Ki Yon
    • Korean Journal of Clinical Pharmacy
    • /
    • v.24 no.4
    • /
    • pp.231-239
    • /
    • 2014
  • Background and objective: Pravastatin has been shown to have favorable risk-benefit profile when it is administered to hypercholesterolemic subjects to prevent cardiovascular events. However, subjects with impaired OATP1B1 activity may be more susceptible to pravastatin-induced muscle toxicity than subjects with normal OATP1B1 activity. A systematic review was conducted to evaluate the effect of SLCO1B1 genetic polymorphism on pharmacokinetics of pravastatin. Method: Medline$^{(R)}$ and Embase$^{(R)}$ were searched for relevant studies until July 2013. The search terms used were pravastatin AND (SLCO1B1 OR OATP1B1 OR LST1 OR SLC21A6) AND (gene OR $genetic^*$ OR $genomic^*$ OR $pharmacogenet^*$ OR $pharmacogenom^*$ OR $polymorph^*$). Results: A meta-analysis of the area under the concentration-time curve (AUC) of pravastatin in $SLCO1B1^*15$ and $SLCO1B1^*1a/^*1a$ was conducted. Five studies met all the inclusion criteria and methodological requirements. There was no statistically significant difference in the AUC value between $SLCO1B1^*15$ and $SLCO1B1^*1a/^*1a$ (p=0.728). However, $SLCO1B1^*15$ participants exhibited significantly higher AUC values than $SLCO1B1^*1b/^*1b$ carriers (p<0.001). In case of $SLCO1B1^*15^*15$ carriers, they had significantly higher AUC value than $SLCO1B1^*1a/^*1a$ subjects (p=0.002). Lastly, compared with to the subjects of $SLCO1B1^*1a/^*1a$, the carriers of heterozygous $SLCO1B1^*15$ increased the AUC value of pravastatin statistically significantly in Asian population (p=0.014). Conclusion: The present meta-analysis suggests that subjects with $SLCO1B1^*15$ are associated with increased AUC of pravastatin.

Bioequivalence of EtodolTM Tablet to KuhnillodineTM Tablet (Micronized Etodolac 200 mg) (건일로딘 정(미결정에토돌락 200 mg)에 대한 에토돌 정의 생물학적동등성)

  • Lee, Jung-Ae;Lee, Yun-Young;Cho, Tae-Seob;Park, Young-Joon;Moon, Byoung-Seok;Kim, Ho-Hyun;Lee, Ye-Rie;Lee, Hee-Joo;Lee, Kyung-Ryul
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • A bioequivalence of $Etodol^{TM}$ tablets (Yuhan corporation) and $Kuhnillodine^{TM}$ tablets (Kuhnil Pharm. Co., Ltd.) was evaluated according to the guideline of Korea Food and Drug Administration (KFDA). Single 200 mg dose of etodolac of each medicine was administered orally to 24 healthy male volunteers. This study was performed in a $2{\times}2$ crossover design. Concentrations of etodolac in human plasma were monitored by a high-performance liquid chromatography. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 24 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was performed using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for $Etodol^{TM}/Kuhnillodine^{TM}$ were 1.01-1.10 and 0.87-1.06, respectively. This study demonstrated a bioequivalence of $Etodol^{TM}$ and $Kuhnillodine^{TM}$ with respect to the rate and extent of absorption.

Bioequivalence of BestidineTM Tablet to Dong-A GasterTM Tablet (Famotidine 20 mg) (동아가스터 정(파모티딘 20 mg)에 대한 베스티딘 정의 생물학적동등성)

  • Park, Chang-Hun;Joung, Sun-Koung;Choi, Mee-Hee;Kim, Ho-Hyun;Lee, Ye-Rie;Lee, Hee-Joo;Lee, Kyung-Ryul
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.505-511
    • /
    • 2004
  • A bioequivalence study of $Bestidine^{TM}$ tablets (Choong Wae Pharma. Corp., Korea) to Dong-A $Gaster^{TM}$ (Dong-A Pharmaceutical Co., Ltd., Korea) tablets was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty four healthy male Korean volunteers received each medicine at the famotidine dose of 40 mg in a $2{\times}2$ crossover study. There was a one-week wash out period between the doses. Plasma concentrations of famotidine were monitored by a high-performance liquid chromatography for over a period of 12 hours after the administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 12 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the Cmax ratio for $Bestidine^{TM}/Gaster^{TM}$ were log 0.90-log 1.06 and log 0.98-log 1.20, respectively. These values were within the acceptable bioequivalence intervals of 0.80-1.25. Thus, our study demonstrated the bioequivalence of $Bestidine^{TM}$ and $Gaster^{TM}$ with respect to the rate and extent of absorption.

Bioequivalence of Efexor® XR capsule to Venfaxine® OR tablet (Venlafaxine 75 mg) (이팩사® XR서방캅셀(벤라팍신, 75 mg)에 대한 벤팍신®OR서방정의 생물학적동등성)

  • Aryal, Dipendra Kumar;Oh, Soo-Yeon;Cho, Jong-Tae;Kim, Hyung-Gun;Kim, Yoon-Gyoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.397-402
    • /
    • 2007
  • To evaluate the bioequivalence of two venlafaxine formulations, a standard 2-way randomized cross-over study was conducted in twenty-four healthy male Korean volunteers. A single oral dose of 75 mg of test formulation Venfaxine $OR^{(R)}$ (tablet) or reference formulation Efexor $XR^{(R)}$ (capsule) was administered with one-week washout period. Plasma concentrations of venlafaxine were assayed for over a period of 72 hours with a well validated method using liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS). The $mean{\pm}S.D$. of maximum concentration $(C_{max})$ and elimination half-life $(t_{1/2})$ were $64.7{\pm}28.5$ ng/mL, $9.2{\pm}3.0$ h, and $67.2{\pm}30.2$ ng/mL, $9.9{\pm}3.5$ h for test and reference formulations, respectively. Time to reach maximum concentration $(T_{max})$ expressed in median value (range), for the test and the reference, were 10 h (6-14) and 8h (4-12), respectively. Similarly, area under the plasma concentration-time curve, from time zero to last sampling time $(AUC_t)$ and from time zero to time infinity $(AUC_{inf})$, for test and reference formulations were $1185{\pm}755$, $1326{\pm}896$ and $1124{\pm}737$, $1185{\pm}755$ $ng{\cdot}h/mL$, respectively. The parametric 90% confidence intervals on the mean of the differences between the two formulations (test-reference) of the log transformed values of $AUC_t$, and $C_{max}$ were 0.9630 to 1.1383 and 0.8650 to 1.0446, respectively. The overall results indicate that the two formulations are bioequivalent and can be prescribe interchangeably.

Bioequivalence of Atorva Tablet® to Lipitor Tablet® (Atorvastatin 20 mg) (리피토정® (아토르바스타틴 20 mg)에 대한 아토르바정®의 생물학적동등성)

  • Lim, Hyun-Kyun;Lee, Tae-Ho;Lee, Jae-Hyun;Youm, Jeong-Rok;Song, Jin-Ho;Han, Sang-Beom
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • The present study describes the evaluation of the bioequivalence of two atorvastatin tablets, Lipitor $Tablet^{(R)}$ (Pfizer, reference drug) and Atorva $Tablet^{(R)}$ (Yuhan, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). Forty-nine healthy male Korean volunteers received each medicine at the atorvastatin dose of 40 mg in a $2{\times}2$ crossover study with a two weeks washout interval. After drug administration, serial blood samples were collected at a specific time interval from 0-48 hours. The plasma atorvastatin concentrations were monitored by an high performance liquid chromatography -tandem mass spectrometer (LC-MS/MS) employing electrospray ionization technique and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.5 min and calibration curves were linear over the concentration range of 0.1-100 ng/mL for atorvastatin. The method was validated for selectivity, sensitivity, linearity, accuracy and precision. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 48hr) was calculated by the linear log trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were complied trom the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Atorva $Tablet^{(R)}$ / Lipitor $Tablet^{(R)}$ were ${\log}\;0.9413{\sim}{\log}\;1.0179$ and ${\log}\;0.831{\sim}{\log}\;1.0569$, respectively. These values were within the acceptable bioequivalence intervals of ${\log}\;0.8{\sim}{\log}\;1.25$. Based on these statistical considerations, it was concluded that the test drug, Atorva $Tablet^{(R)}$ was bioequivalent to the reference drug, Lipitor $Tablet^{(R)}$.

The Drying Characteristics of Cooked-Ginseng Root and Its Shrinkage during Dehydration (증자인삼(蒸煮人蔘)의 건조특성(乾燥特性)과 건조(乾燥)에 수반(隨伴)하는 삼근(蔘根)의 수축(收縮))

  • Chun, Jae-Kun;Park, Hoon;Suh, Chung-Sik
    • Applied Biological Chemistry
    • /
    • v.28 no.3
    • /
    • pp.167-173
    • /
    • 1985
  • Hot air drying characteristics of six year old cooked ginseng root at temperature ranges of $55{\sim}75^{\circ}C$ under 1.8m/sec air velocity and shrinkages accompained were investigated. Drying time to reach equilibrium moisture content of the root takes from 20 to 30 hours, depending on the subjected drying temperatures and root sizes. Drying curve shows that it has two or three falling stages and drying constant are continuously changed. Higher drying constant was observed both at early and late stages of drying. Shrinkage ratio of length, diameters, surface area and volume of the root were 13.0, 39.8, 47.7 and 68.5%, respectively, after 40 hours dry at $55^{\circ}C$. The most of shrinkage was observed at early drying stage.

  • PDF

Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well (셰일가스정 천이유동 생산자료분석의 기술적 고려사항)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • This paper presents development of an appropriate procedure and flow chart to analyze shale gas production data obtained from a multi-fractured horizontal well according to flow characteristics in order to calculate an estimated ultimate recovery. Also, the technical considerations were proposed when a rate transient analysis was performed with field production data occurred to only $1^{st}$ transient flow. If production data show the $1^{st}$ transient flow from log-log and square root time plot analysis, production forecasting must be performed by applying different method as before and after of the end of $1^{st}$ linear flow. It is estimated by an area of stimulated reservoir volume which can be calculated from analysis results of micro-seismic data. If there are no bottomhole pressure data or micro-seismic data, an empirical decline curve method can be used to forecast production performance. If production period is relatively short, an accuracy of production data analysis could be improved by analyzing except the early production data, if it is necessary, after evaluating appropriation with near well data. Also, because over- or under-estimation for stimulated reservoir volume could take place according to analysis method or analyzer's own mind, it is necessary to recalculate it with fracture modeling, reservoir simulation and rate transient analysis, if it is necessary, after adequacy evaluation for fracture stage, injection volume of fracture fluid and productivity of producers.