Effect of $SLCO1B1^*15$ on Pravastatin Pharmacokinetics: A Systematic Review and Meta-analysis

프라바스타틴에서 $SLCO1B1^*15$의 약동학적 영향: 체계적 고찰 및 메타분석

  • Kim, Jong Yoon (Seoul National University Hospital) ;
  • Nakagawa, Naoto (Department of Pharmaceutical Sciences, Tohoku University Hospital) ;
  • Yoon, Hyonok (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Chun, Pusoon (College of Pharmacy, InJe University) ;
  • Rhew, Ki Yon (College of Pharmacy, Dongduk Women's University)
  • Received : 2014.09.11
  • Accepted : 2014.10.19
  • Published : 2014.12.31

Abstract

Background and objective: Pravastatin has been shown to have favorable risk-benefit profile when it is administered to hypercholesterolemic subjects to prevent cardiovascular events. However, subjects with impaired OATP1B1 activity may be more susceptible to pravastatin-induced muscle toxicity than subjects with normal OATP1B1 activity. A systematic review was conducted to evaluate the effect of SLCO1B1 genetic polymorphism on pharmacokinetics of pravastatin. Method: Medline$^{(R)}$ and Embase$^{(R)}$ were searched for relevant studies until July 2013. The search terms used were pravastatin AND (SLCO1B1 OR OATP1B1 OR LST1 OR SLC21A6) AND (gene OR $genetic^*$ OR $genomic^*$ OR $pharmacogenet^*$ OR $pharmacogenom^*$ OR $polymorph^*$). Results: A meta-analysis of the area under the concentration-time curve (AUC) of pravastatin in $SLCO1B1^*15$ and $SLCO1B1^*1a/^*1a$ was conducted. Five studies met all the inclusion criteria and methodological requirements. There was no statistically significant difference in the AUC value between $SLCO1B1^*15$ and $SLCO1B1^*1a/^*1a$ (p=0.728). However, $SLCO1B1^*15$ participants exhibited significantly higher AUC values than $SLCO1B1^*1b/^*1b$ carriers (p<0.001). In case of $SLCO1B1^*15^*15$ carriers, they had significantly higher AUC value than $SLCO1B1^*1a/^*1a$ subjects (p=0.002). Lastly, compared with to the subjects of $SLCO1B1^*1a/^*1a$, the carriers of heterozygous $SLCO1B1^*15$ increased the AUC value of pravastatin statistically significantly in Asian population (p=0.014). Conclusion: The present meta-analysis suggests that subjects with $SLCO1B1^*15$ are associated with increased AUC of pravastatin.

Keywords

References

  1. Konig J, Muller F, Fromm MF. Transporters and drugdrug interactions: important determinants of drug disposition and effects. Pharmacol Rev 2013;65:944-66. https://doi.org/10.1124/pr.113.007518
  2. Oh ES, Kim CO, Cho SK, et al. Impact of ABCC2, ABCG2 and SLCO1B1 polymorphisms on the pharmacokinetics of pitavastatin in humans. Drug Metab Pharmacokinet 2013;28:196-202. https://doi.org/10.2133/dmpk.DMPK-12-RG-068
  3. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 209;158:693-705. https://doi.org/10.1111/j.1476-5381.2009.00430.x
  4. Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 2003;1609:1-18. https://doi.org/10.1016/S0005-2736(02)00633-8
  5. Chung JY, Cho JY, Yu KS, et al. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther 2005;78:342-50. https://doi.org/10.1016/j.clpt.2005.07.003
  6. Choi JH, Lee MG, Cho JY, et al. Influence of OATP1B1 genotype on the pharmacokinetics of rosuvastatin in Koreans. Clin Pharmacol Ther 2008;83:251-7. https://doi.org/10.1038/sj.clpt.6100267
  7. Everett DW, Chando TJ, Didonato GC, et al. Biotransformation of pravastatin sodium in humans. Drug Metab Dispos 1991;19:740-8.
  8. Hatanaka T. Clinical pharmacokinetics of pravastatin: mechanisms of pharmacokinetic events. Clin Pharmacokinet 2000;39:397-412. https://doi.org/10.2165/00003088-200039060-00002
  9. Yamazaki M, Akiyama S, Nishigaki R, et al. Uptake is the rate-limiting step in the overall hepatic elimination of pravastatin at steady-state in rats. Pharm Res 1996;13:1559-64. https://doi.org/10.1023/A:1016044032571
  10. Ho RH, Tirona RG, Leake BF, et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 2006;130:1793-806. https://doi.org/10.1053/j.gastro.2006.02.034
  11. Pfeffer MA, Keech A, Sacks FM, et al. Safety and tolerability of pravastatin in long-term clinical trials: prospective Pravastatin Pooling (PPP) Project. Circulation 2002;105:2341-6. https://doi.org/10.1161/01.CIR.0000017634.00171.24
  12. Generaux GT, Bonomo FM, Johnson M, et al. Impact of SLCO1B1 (OATP1B1) and ABCG2 (BCRP) genetic polymorphisms and inhibition on LDL-C lowering and myopathy of statins. Xenobiotica 2011;41:639-51. https://doi.org/10.3109/00498254.2011.562566
  13. Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998;63:332-41. https://doi.org/10.1016/S0009-9236(98)90165-5
  14. Morimoto K, Oishi T, Ueda S, et al. A novel variant allele of OATP-C (SLCO1B1) found in a Japanese patient with pravastatin-induced myopathy. Drug Metab Pharmacokinet 2004;19:453-5. https://doi.org/10.2133/dmpk.19.453
  15. Ho RH, Choi L, Lee W, et al. Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics 2007;17:647-6. https://doi.org/10.1097/FPC.0b013e3280ef698f
  16. Niemi M, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004;14:429-40. https://doi.org/10.1097/01.fpc.0000114750.08559.32
  17. Maeda K, Ieiri I, Yasuda K, et al. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin Pharmacol Ther 2006;79:427-39. https://doi.org/10.1016/j.clpt.2006.01.011
  18. Hedman M, Antikainen M, Holmberg C, et al. Pharmacokinetics and response to pravastatin in paediatric patients with familial hypercholesterolaemia and in paediatric cardiac transplant recipients in relation to polymorphisms of the SLCO1B1 and ABCB1 genes. Br J Clin Pharmacol 2006;61:706-15. https://doi.org/10.1111/j.1365-2125.2006.02643.x
  19. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analysis. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm. Accessed July 30, 2013.
  20. Kivisto KT, Niemi M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res 2007;24:239-47. https://doi.org/10.1007/s11095-006-9159-2
  21. Tomita Y, Maeda K, Sugiyama Y. Ethnic variability in the plasma exposures of OATP1B1 substrates such as HMG-CoA reductase inhibitors: a kinetic consideration of its mechanism. Clin Pharmacol Ther 2013;94:37-51. https://doi.org/10.1038/clpt.2012.221
  22. Nakai D, Nakagomi R, Furuta Y, et al. Human liverspecific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharmacol Exp Ther 2001;297:861-7.
  23. Kim RB. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) and genetic variability (single nucleotide polymorphisms) in a hepatic drug uptake transporter: what's it all about? Clin Pharmacol Ther 2004;75:381-5. https://doi.org/10.1016/j.clpt.2004.01.004
  24. Konig J, Cui Y, Nies AT, et al. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 2000;278:156-64. https://doi.org/10.1152/ajpgi.2000.278.1.G156
  25. Ito K, Suzuki H, Horie T, et al. Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm Res 2005;22:1559-77. https://doi.org/10.1007/s11095-005-6810-2
  26. Hedman M, Neuvonen PJ, Neuvonen M, et al. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immune suppression. Clin Pharmacol Ther 2004;75:101-9. https://doi.org/10.1016/j.clpt.2003.09.011
  27. Niemi M, Schaeffeler E, Lang T, et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004;14:429-40. https://doi.org/10.1097/01.fpc.0000114750.08559.32
  28. Romaine SP, Bailey KM, Hall AS, et al. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J 2010;10:1-11. https://doi.org/10.1038/tpj.2009.54
  29. Zhang W, Chen BL, Ozdemir V, et al. SLCO1B1 521T-->C functional genetic polymorphism and lipid-lowering efficacy of multiple-dose pravastatin in Chinese coronary heart disease patients. Br J Clin Pharmacol 2007;64:346-52. https://doi.org/10.1111/j.1365-2125.2007.02892.x
  30. Tachibana-Iimori R, Tabara Y, Kusuhara H, et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipidlowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004;19:375-80. https://doi.org/10.2133/dmpk.19.375
  31. Martin NG, Li KW, Murray H, et al. The effects of a single nucleotide polymorphism in SLCO1B1 on the pharmacodynamics of pravastatin. Br J Clin Pharmacol 2012;73:303-6. https://doi.org/10.1111/j.1365-2125.2011.04090.x
  32. Sirtori CR, Mombelli G, Triolo M, et al. Clinical response to statins: mechanism(s) of variable activity and adverse effects. Ann Med 2012;44:419-32. https://doi.org/10.3109/07853890.2011.582135
  33. Takane H, Miyata M, Burioka N, et al. Severe toxicities after irinotecan-based chemotherapy in a patient with lung cancer: a homozygote for the SLCO1B1*15 allele. Ther Drug Monit 2007;29:666-8. https://doi.org/10.1097/FTD.0b013e3181357364
  34. Wilke RA, Ramsey LB, Johnson SG, et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 2012;92:112-7. https://doi.org/10.1038/clpt.2012.57
  35. Nozawa T, Nakajima M, Tamai I, et al. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J Pharmacol Exp Ther 2002;302:804-13. https://doi.org/10.1124/jpet.302.2.804
  36. Mwinyi J, Johne A, Bauer S, et al. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther 2004;75:415-21. https://doi.org/10.1016/j.clpt.2003.12.016
  37. Nishizato Y, Ieiri I, Suzuki H, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: Consequences for pravastatin pharmacokinetics. Clinical Pharmacology & Therapeutics 2003;73:554-65. https://doi.org/10.1016/S0009-9236(03)00060-2
  38. Wen A, Xu X, Yan X, et al. Effects of Genetic Polymorphism of OATP1B1 on Pharmacokinetics of Pravastatin. Chinese Pharmaceutical Journal 2008;43:1735-39.
  39. Deng JW, Song IS, Shin HJ, et al. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics 2008;18:424-3. https://doi.org/10.1097/FPC.0b013e3282fb02a3