• 제목/요약/키워드: Arctic sea

검색결과 207건 처리시간 0.023초

Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.305-311
    • /
    • 2016
  • The spatial size and variation of Arctic sea ice play an important role in Earth's climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

Status of Korean Research Activity on Arctic Sea Ice Monitoring using KOMPSAT-series Satellite

  • Kim, Hyun-cheol;Chae, Tae-Byeong
    • 한국지구과학회지
    • /
    • 제40권4호
    • /
    • pp.329-339
    • /
    • 2019
  • Arctic warming is a global issue. The sea ice in the Arctic plays a crucial role in the climate system. We thought that a recent abnormality in many countries in the northern hemisphere could be related to the effects of shrinking sea ice in the Arctic. Many research groups monitor sea ice in the Arctic for climate research. Satellite remote sensing is an integral part of Arctic sea ice research due to the Arctic's large size, making it difficult to observe with general research equipment, and its extreme environment that is difficult for humans to access. Along with monitoring recent weather changes, Korea scientists are conducting polar remote sensing using a Korean satellite series to actively cope with environmental changes in the Arctic. The Korean satellite series is known as KOMPSAT (Korea Multi-Purpose Satellite, Korean name is Arirang) series, and it carries optical and imaging radar. Since the organization of the Satellite Remote Sensing and Cryosphere Information Center in Korea in 2016, Korean research on and monitoring of Arctic sea ice has accelerated rapidly. Moreover, a community of researchers studying Arctic sea ice by satellite remote sensing increased in Korea. In this article, we review advances in Korea's remote sensing research for the polar cryosphere over the last several years. In addition to satellite remote sensing, interdisciplinary studies are needed to resolve the current limitations on research on climate change.

Dynamic-Thermodynamic Sea Ice Model: Application to Climate Study and Navigation

  • Makshtas, Alexander;Shoutilin, Serger V.;Marchenko, Alexey V.;Bekryaev, Roman V.
    • Journal of Ship and Ocean Technology
    • /
    • 제8권2호
    • /
    • pp.20-28
    • /
    • 2004
  • A dynamic-thermodynamic sea ice model with 50-km spatial and 24-hour temporal resolution is used to investigate the spatial and long-term temporal variability of the sea ice cover the Arctic Basin. The model satisfactorily reproduces the averaged main characteristics of the sea ice and the sea ice extent in the Arctic Basin and its decrease in early 1990th. At times model allows to suppose partial recovery of sea ice cover in the last years of twenty century. The employment of explicit form for description of ridging gives opportunity to assume that the observed thinning is the result of reduction the intensity of ridging processes and to estimate long-term variability of probability the ridge free navigation in the different parts of the Arctic Ocean including the North Sea Route area.

북극의 재발견: 국제 자원경쟁의 새로운 각축장? (Rediscovery of the Arctic: A New Arena of Competition for Natural Resources in the 21st Century?)

  • 이서항
    • Strategy21
    • /
    • 통권30호
    • /
    • pp.200-235
    • /
    • 2012
  • Over the past few years, due to the climate change of the earth, the Arctic's sea ice cover is undergoing a historic transformation - thinning, extent reduction in all seasons, and mitigation in the area of multi-year ice in the central Arctic Ocean. These changes allow for increases in maritime access throughout the Arctic Ocean and for potential longer seasons of navigation and possibly transarctic voyage in the summer. These changes also allow more exploration for oil, gas, and other minerals. The Arctic is now an archetype of the complex, multi-dimensional global problems of the twenty-first century. Military security, environmental security, and economic security interact. The potentially enormous economic stakes, sufficient to change the strategic balance among the states of the region, set off competitive pressures for national advantage. Korea, which is heavily dependent upon the sea lane in terms of transportation of its exports and imports, is very much interested in the Arctic sea routes. Korea believes that the Artic sea route, particularly the Northern Sea Route (NSR), could serve as a new useful sea lane, which will enable shorter times between East Asia and Europe, thus resulting in substantial cost saving for ship operators. In addition to shipping, Korea is interested in other Arctic-related maritime industries. Korea, as a leading shipbuilder in the global market, is interested in building ice breakers, drill ships, and other vessels which can contribute to safe operation in Arctic resource development and exploration. Korea, as one of the future stakeholders in Arctic maritime activities, should be ready to foster international cooperation in the region.

  • PDF

국제법상 북극항로에서의 통항제도에 관한 연구 (A Study on the Legal Issues relating to Navigation through Arctic Passage)

  • 문규은
    • Strategy21
    • /
    • 통권43호
    • /
    • pp.29-55
    • /
    • 2018
  • Arctic sea ice has been retreating as a result of the global warming. Arctic sea ice extent for April 2018 averaged 13.71 million square kilometers. This figure shows far less sea ice compared to the average extent from 1981 to 2010. Meanwhile, 287 times of maritime transits through the Northwest Passage have been made during the 2017 and the first ship traversed the Northern Sea Route without the assistant of ice-breaker in August 2017. Commercialization of the Arctic Passage means significant economic and strategic advantages by shortening the distance. In this article, 'Arctic Passage' means Northern Sea Route along the Arctic coast of Russia and Northwest Passage crossing Canadian Arctic Ocean. As climate changes, the potential feasibility of the Arctic Passage has been drawing international attention. Since navigation in this area remains hazardous in some aspects, IMO adopted Polar Code to promote safe, secure and sustainable shipping through the Arctic Passage. Futhermore, Russia and Canada regulate foreign vessels over the maritime zones with the authority to unilaterally exercise jurisdiction pursuant to the Article 234 of UNCLOS. The dispute over the navigation regime of the arctic passage materialized with Russia proclaimed Dmitrii Laptev and Sannikov Straits as historically belong to U.S.S.R. in the mid 1960s and Canada declared that the waters of the passage are historic internal waters in 1973 for the first time. So as to support their claims, In 1985, Russia and Canada established straight baseline including Northern Sea Route and Northwest Passage. The United States has consistently protested that the Northern Sea Route and Northwest Passage are straits used for international navigation which are subject to the regime of transit passage. Firstly, it seems that Russia and Canada do not meet the basic requirements for acquiring a historic title. Secondly, since the Law of the Sea had adopted before the establishment of straight baseline over the Russian Arctic Archipelago and the Canadian Arctic Archipelago, Ships can exercise at least the right of innocent passage. Lastly, Northern Sea Route and Northwest Passage have fulfilled the both geographical and functional criteria pertaining to the strait used for international navigation under the international law. Especially, should the arctic passage become commercially viable, it can be expected to accumulate the functional criterion. Russia and Canada regulate the ships navigate in their maritime zones by adopting the higher degree of an environmental standard than generally accepted international rules and standard mainly under the Article 234 of UNCLOS. However, the Article 234 must be interpreted restrictively as this contains constraint on the freedom of navigation. Thus, it is reasonable to consider that the Article 234 is limited only to the EEZ of coastal states. Therefore, ships navigating in the Arctic Passage with the legal status of the territorial sea and the international straits under the law of the sea have the right of innocent passage and transit passage as usual.

북극의 관리체제와 국제기구 : 북극이사회(Arctic Council)를 중심으로 (Arctic Governance and International Organization : A Focus on the Arctic Council)

  • 진동민;서현교;최선웅
    • Ocean and Polar Research
    • /
    • 제32권1호
    • /
    • pp.85-95
    • /
    • 2010
  • There is increasing consensus that global warming is seriously affecting the Arctic region. Sea Ice decreases and sea level rise have led to environmental change in Arctic Ecosystems, while also making the Arctic sea route more accessible to humans. There are complicated international governance dynamics in play, in addition to commercial and scientific interests in the Arctic region. This provides a unique opportunity for Korea to lead the future direction of Arctic policy in response to the global issues such as climate change and economic or scientific interests. Korea acquired Ad-hoc Observer status of the Arctic Council(AC) in 2008, which is the only pan-Arctic intergovernmental organization. It consists of six working groups: ACAP, AMAP, CAFF, PAME, EPPR, SDWG that implement research, survey, and monitoring. AC's Observer country has the opportunity to participate in a diverse range of activities such technical and expertise support, research and monitoring, financial support and conference organization. In order for Korea to expand its activities in the Arctic region, we suggest the following approach: First, Korea should become more actively engaged with the Arctic Council and its activities; Second, Korea should construct organized collaborative networks of national experts to respond to Arctic issues; Third, Korea should develop collaborations with Arctic states; Finally, Korea should intensify its research on international relations and international laws related to the Arctic region.

IDENTIFICATION OF THERMODYNAMIC PARAMETERS OF ARCTIC SEA ICE AND NUMERICAL SIMULATION

  • Xiw, Chao;Feng, Enmin;Li, Zhijun;Peng, Lu
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.519-530
    • /
    • 2008
  • This paper studies the multi-domain coupled system of one dimensional Arctic temperature field and establishes identification model about the thermodynamic parameters of sea ice (heat storage capacity, density and conductivity) by the so-called output least-square estimate according to the temperature data acquired by a monitor buoy installed in the Arctic ocean. By the optimal control theory, the existence and dependability of weak solution and the identifiability of identification model have been given. Moreover, necessary optimality condition is proposed. Furthermore, the optimal algorithm for the identification model is constructed. By using the optimal thermodynamic parameters of Arctic sea ice, the numerical simulation is implemented, and the numerical results of temperature distribution of Arctic sea ice are demonstrated.

  • PDF

극지 해빙 위성관측을 위한 분석 기술 개발 (Research on Analytical Technique for Satellite Observstion of the Arctic Sea Ice)

  • 김현철;한향선;현창욱;지준화;손영선;이성재
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1283-1298
    • /
    • 2018
  • 온난화에 의한 이상기후의 징후가 직접적으로 감지되고 있는 북극권에 대한 연구 필요성이 사회적으로 강력히 요구되고 있다. 온난화의 추이를 가장 잘 보여주고 있는 해빙의 변화는 인공위성 원격탐사를 이용하여 추적 감시된다. 극지연구소에서 2017년부터 "북극해빙위성 관측을 위한 기술 개발" 연구를 진행하고 있다. 본 연구는 북극 해빙의 특성 정보를 위성자료로부터 추출하기 위한 다양한 접근법을 이용한 연구를 포함하고 있으며, 북극권 개발에 대비한 '북극 빙권 종합 위성 관측망' 구축에 필수적인 국제 공동 연구 협력도 포함하고 있다. 기후변화 연구와 더불어 북극항로 활용에 대한 기초정보를 제공하고 있는 극지연구소의 북극 원격탐사 연구 소개를 통해 국내 원격탐사 전문가들의 관심과 집중을 부탁하고자 한다. 북극연구에 대한 국제 동향과 국내 정책 배경을 소개하고, 극지연구소에서 연구 수행한 빙권 정보, 특히 한국항공우주연구원과 협동연구를 통해 아리랑위성을 활용한 북극 해빙 관측 연구를 소개한다.

북극해와 북해에서의 해빙 관련 최신 동향(2017년 7월까지) (Recent Trends of Sea Ice in the Arctic Ocean and Northern Sea Route as of July 2017)

  • 하룬 알 러쉬드 아메드;양찬수
    • 한국연안방재학회지
    • /
    • 제4권3호
    • /
    • pp.133-137
    • /
    • 2017
  • The Arctic region remains surrounded by sea ice during most of the period of the year. In the Arctic Ocean the Northern Sea Route (NSR) has been used as an important route for shipping. The arctic sea ice is decreasing since 1979; hence needs to be monitored. In this research work sea ice concentration in the recent years and sea ice concentration anomalies of few months with long term sea ice concentration are studied. The climatology of long term ice concentration data from various satellites, and the recent sea ice concentration data from Advanced Microwave Scanning Radiometer 2 (AMSR2) were used. The results show that sea ice concentration and sea ice extent in the Arctic region decreased by around 5% from 2015 to 2016, but in 2017 increased again in smaller amount in some areas like around Novaya Zemlya, and parts of the sea in between Greenland and Longyearbyen, and around Banks Island. The percentages of sea ice area in NSR for July 7 in 2015 to 2017 were 37%, 39% and 33%, respectively, indicating a large area (around ten thousand $km^2$) become ice free in 2017 compared to the previous year.

북극해에서 다중위성 자료를 이용한 표층수온, 해빙농도 및 클로로필의 장기 변화 (Climatological Variability of Multisatellite-derived Sea Surface Temperature, Sea Ice Concentration, Chlorophyll-a in the Arctic Ocean)

  • 김현아;박진구;김현철;손영백
    • 대한원격탐사학회지
    • /
    • 제33권6_1호
    • /
    • pp.901-915
    • /
    • 2017
  • 최근 전지구적인 기후변화가 직/간접적으로 북극환경에 큰 변화를 야기하고 있다. 해양-대기의 상호적인 피드백 작용은 최근 막대한 양의 해빙면적 감소를 초래했으며, 북극 온난화 현상을 가속시켜 왔다. 이러한 현상들은 직/간접적으로 북극의 생-물리학적 상호관계에 영향을 주어 해양생태계에 많은 변화를 초래할 것으로 보고되었다. 본 연구는 북극환경변화에 대해 물리-생물학적인 현상의 변화 및 인자간의 관계성을 포괄적으로 이해하기 위해 수행되었다. 북극의 환경변화를 조사하기 위해 SeaWiFS 및 MODIS-Aqua에서 제공하는 클로로필 농도와 OISST의 표층수온, ECMWF ERA-Interim의 해빙농도 자료를 이용하였다. 연구기간은 1998년-2016년 여름이며 조사해역은 북위 $60^{\circ}$ 이상의 해역으로 제한하였다. 전체적으로 클로로필의 증가($0.15mg\;m^{-3}\;decade^{-1}$), 표층수온의 상승($0.43^{\circ}C\;decade^{-1}$), 해빙농도의 감소($-5.37%\;decade^{-1}$)를 보였으나 해역별로 차이를 나타냈다. 이들 인자간 상관성 분석에서 표층수온과 해빙농도간의 상관성은 전 해역에 걸쳐 강한 음의 상관관계(r=-0.76)를 보인 반면, 클로로필과 해빙농도의 관계는 자료의 한계성으로 인해 전체적으로 낮은 상관성($r={\pm}0.1$)을 나타내었다. 또한 표층수온과 클로로필의 상관성은 해역에 따라 편차를 보이나 약 ${\pm}0.6$의 상관성을 보였다.