• Title/Summary/Keyword: Arch wire

Search Result 116, Processing Time 0.024 seconds

3-dimensional finite element analysis of maxillary molar distalization using R-jig with TADs (TADs와 R-jig를 이용한 상악 구치 원심 이동에 관한 3차원 유한요소 분석)

  • Tark, Myung-Hyun;Lee, Keunyoung;Cho, Jin-Woo;Chee, Young-Deok;Cho, Jin-Hyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.4
    • /
    • pp.265-277
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the differences of displacement pattern depending on type of sliding jig and application method during maxillary molar distalization with temporary anchorage devices (TADs). Materials and Methods: Maxilla with normal tooth size and arch shape was selected to create a 3-dimensional finite element model, which included the bracket, orthodontic main archwire, removable sliding jig (R-jig). The orthodontic mini-implant anchorage was set 8 mm superiorly from main archwire, buccally between the second premolar and first molar. The base experimental design was Condition 1, which was composed $0.019{\times}0.025$ inch stainless steel (SS) of wire size of R-jig, 200 gm force, un-tied state. And the other designs varied to wire size of R-jig, magnitude of force. The results are as follows. Results: As the wire size of R-jig was increased, the deformation of R-jig was decreased. However, the displacement of second molar wasn't different each other. As the force to second molar was increased, the more displacement of second molar was observed, and the more distal tipping movement, vetical displacement was observed. Conclusion: R-jig can get distal teeth movement in orthodontic treatment without side effects.

Three-dimensional finite element analysis of initial tooth displacement according to force application point during maxillary six anterior teeth retraction using skeletal anchorage (골격성 고정원을 이용한 상악 6전치 후방 견인시 힘의 적용점 변화에 따른 치아 이동 양상에 관한 유한 요소법적 분석)

  • Kim, Chan-Nyeon;Sung, Jae-Hyun;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.339-350
    • /
    • 2003
  • The purpose of this study was to investigate the micro-implant height and anterior hook height to prevent maxillary six anterior teeth from lingual tipping and extruding during space closure. We manufactured maxillary dental arch form, bracket and wire, using the computer aided three-dimensional finite element method. Bracket was $.022'{\times}.028'$ slot size and attached to tooth surface. Wire was $.019'{\times}.025'$ stainless steel and $.032'{\times}.032'$ stainless steel hook was attached to wire between lateral incisor and canine. Length of hook was 8mm and force application points were marked at intervals of In. Four micro-implants were implanted on alveolar bone between second premolar and first molar. The heights of them were 4, 6, 8, 10mm starting from wire. We analyzed initial displacement of teeth by various force application point applying force of 150gm to each micro-implant and anterior hook. The conclusions of 4his study are as the following : 1. When the micro-implant height was 4m and the anterior hook height was 5mm and below, anterior teeth were tipped lingually. When the anterior hook height was 6mm and above, anterior teeth were tipped labially. 2. When the micro-implant height was 6mm and the anterior hook height was 6mm and below, the anterior teeth were tipped lingually. When the anterior hook height was 6m and above, the anterior teeth were tipped labially. But lingual tipping of anterior teeth decreased and labial tipping Increased when the micro-implant height was 6mm, compared with 4mm micro-implant height. 3. When the micro-implant height was 8mm and the anterior hook height was 2mm, the anterior teeth were tipped lingually. When the anterior hook height was 3mm and above, labial tipping movement of the anterior teeth increased proportionally. 4. When the micro-implant height was 10mm and the anterior hook height was 2mm and above, labial tipping of the anterior teeth increased proportionally. 5. As the anterior hook height increased, aterior teeth were tipped more labially. But extrusion occurred on canine and premolar area because of the increase of wire distortion. 6. Movement of the posterior teeth was tipped distally during maxillary six anterior teeth retraction using micro-im plant because of the friction between bracket and were Based on the results of this study, we could predict the pattern of the tooth movement according to position of micro-implant and height of anterior hook. It seems that we can find the force application point for proper tooth movement in consideration of inclination of anterior anterior teeth, periodontal condition, overjet and overbite

Intrusion of the extruded maxillary central incisor using skeletal anchorage system and unilateral segmental intrusion arch (골성 고정원과 편측 분절호선을 이용한 정출된 상악 중절치의 압하 치료)

  • Kwon, Eun-Young;Baek, Young-Jae;Park, Soo-Byung;Kim, Seong-sik;Kim, Yong-il;Choi, Youn-kyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.180-190
    • /
    • 2019
  • Patients who have a moderate periodontitis with pathologic tooth migration of maxillary incisors, it is necessary not only periodontal treatment for reduce periodontal inflammation, but also orthodontic treatment to teeth repositioning. For orthodontic treatment, it is necessary to apply less force and careful considerations of the center of resistance of the tooth and optimal force of tooth movement. At this time, the segmental arch applied only to the target teeth, is more effective and predictable, because applied force and direction can be controlled. In addition, to design the orthodontic appliance that can prevent the unwanted tooth movement that used as an anchorage is important. In recent years, various types of skeletal anchorage system have been used for preventing loss of the anchorage. We reported the patient who had extruded maxillary central incisor due to pathologic tooth migration, treated by a successful periodontal-orthodontic multidisciplinary treatment using an orthodontic appliance designed to apply less traumatic force and reduce an anchorage loss.

TREATMENT OF ECTOPIC ERUPTING MANDIBULAR FIRST PERMANENT MOLAR CAUSED BY IMPROPERLY RESTORED STAINLESS STEEL CROWN : CASE REPORT (부적절하게 수복된 stainless steel crown에 의해 야기된 하악 제1대구치 이소맹출의 치험례)

  • Park, Chu-Seok;Choi, Byung-Jai;Sohn, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.98-102
    • /
    • 2000
  • Ectopic eruption is out of a normal position by local eruption disturbance in the developing permanent molar. The prevalence of ectopic eruption is reported to be the between 2 and 6%, most often associated maxillary first permanent molar whereas, the occurrence for the mandibular is quite rare. The etiologic factors of ectopic eruption are inadequate arch length, lack of growth in the posterior region of the jaw, mesially inclined eruption path of first permanent molars, abnormally large first permanent molars, hereditary factor and a stainless steel crown which has been improperly restored. Ectopic eruption can be treated by the use of brass wire, separating elastics, distal disking and Humphrey appliance and the use of removable appliance and cervical traction headgear after extraction of the second primary molar. This case was that lower right first permanent molar was mesially tilted state by locking on the stainless steel crown of a lower right second primary molar. The stainless steel crown was removed and Humphrey appliance was set. Like this case, ectopic eruption could be happened by the stainless steel crown which improperly restored. In restoration of the stainless steel crown, selection of proper size, trimming and contouring are very important.

  • PDF

Finite-element investigation of the center of resistance of the maxillary dentition (상악 치아군의 저항중심의 위치에 관한 3차원 유한요소 해석)

  • Jeong, Gwang-Mo;Sung, Sang-Jin;Lee, Kee-Joon;Chun, Youn-Sic;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.83-94
    • /
    • 2009
  • Objective: The aim of this study was to investigate the 3-dimensional position of the center of resistance of the 4 maxillary anterior teeth, 6 maxillary anterior teeth, and the full maxillary dentition using 3-dimensional finite element analysis. Methods: Finite element models included the whole upper dentition, periodontal ligament, and alveolar bone. The crowns of the teeth in each group were fixed with buccal and lingual arch wires and lingual splint wires to minimize individual tooth movement and to evenly disperse the forces to the teeth. A force of 100 g or 200 g was applied to the wire beam extended from the incisal edge of the upper central incisor, and displacement of teeth was evaluated. The center of resistance was defined as the point where the applied force induced parallel movement. Results: The results of study showed that the center of resistance of the 4 maxillary anterior teeth group, the 6 maxillary anterior teeth group, and the full maxillary dentition group were at 13.5 mm apical and 12.0 mm posterior, 13.5 mm apical and 14.0 mm posterior, and 11.0 mm apical and 26.5 mm posterior to the incisal edge of the upper central incisor, respectively. Conclusions: It is thought that the results from this finite element models will improve the efficiency of orthodontic treatment.

Three-dimensional finite element analysis on the effect of maxillary incisor torque (상악 절치부-토크에 의한 치아 이동과 응력 분포에 관한 유한요소법적 연구)

  • Yoon, Hyun-Joo;Lim, Yong-Kyu;Lee, Dong-Yul;Jo, Yung-Soo
    • The korean journal of orthodontics
    • /
    • v.35 no.2 s.109
    • /
    • pp.137-147
    • /
    • 2005
  • The purpose of this study was to investigate the stress distribution in the periodontal tissue and the displacement of teeth when active torque was applied to the maxillary incisors by three-dimensional finite element analysis A three-dimensional finite element model consisted of the maxillary teeth and surrounding periodontal membrane, $.022{\times}.028$ Roth prescription bracket and stainless steel, NiTi and TMA rectangular ideal arch wires which were modeled by hexahedron elements. Applied active torques were 2, 5 and 10 degrees ThHe findings of this study showed that the reaction force acting or the bracket was the extrusion force on the mesial side of the incisors and canine and the intrusion force on the distal side of the incisors and canine. The amount of force and moment was greatest at the lateral incisor. When active anterior labial crown torque was applied. labial crown and distal tipping and Intrusion of the incisors took place. and lingual crown distal tipping and extrusion of the canine occured. An excessive force was concentrated on the lateral incisor, when the stainless steel wire was used NiTi or TMA wire is desirable for torque control.

Conventional Anchorage Reinforcement vs. Orthodontic Mini-implant: Comparison of Posterior Anchorage Loss During the En Masse Retraction of the Upper Anterior Teeth

  • Baek, Seung-Hak;Kim, Young-Ho
    • Journal of Korean Dental Science
    • /
    • v.3 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • This study sought to compare the amounts of posterior anchorage loss during the en masse retraction of the upper anterior teeth between orthodontic mini-implant (OMI) and conventional anchorage reinforcement (CAR) such as headgear and/or transpalatal arch. The subjects were 52 adult female patients treated with sliding mechanics (MBT brackets, .022" slot, .019X.025" stainless steel wire, 3M-Unitek, Monrovia, CA, USA). They were allocated into Group 1 (N=24, Class I malocclusion (CI), upper and lower first premolar (UP1LP1) extraction, and CAR), Group 2 (N=15, Cl, UP1LP1 extraction and OMI), and Group 3 (N=13, Class II division 1 malocclusion, upper first and lower second premolar extraction, and OMI). Lateral cephalograms were taken before (T0) and after treatment (T1). A total of 11 anchorage variables were measured. Analysis of variance was used for statistical analysis. There was no significant difference in treatment duration and anchorage variables at T0 among the three groups. Groups 2 and 3 showed significantly larger retraction of the upper incisor edge (U1E-sag, 9.3mm:7.3mm, P<.05) and less posterior anchorage loss (U6M-sag, 0.7~0.9mm:2mm, P<.05; U6A-sag, 0.5mm:2mm, P<.01) than Group 1. The ratio of retraction amount of the upper incisor edge per 1 of anchorage loss in the upper molar made for the significant difference between Groups 1 and 2 (4.6mm:7.0mm, P<.05). Group 3 showed a relatively distal inclination of the upper molar (P<.05) and the intrusion of the upper incisor and first molar (U1E-ver, P<.05; U6F-ver, P<.05) compared to Groups 1 and 2. Although OMI could not shorten the treatment duration, it could provide better maximum posterior anchorage than CAR.

  • PDF

C-activator treatment for distalization of maxillary molars in Class II anterior deep bite malocclusion (C-activator를 이용한 성장기 II급 부정교합환자의 구치부 원심이동 치험례)

  • Kim, Seong-Hun;Chung, Kyu-Rhim;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.34 no.3 s.104
    • /
    • pp.269-277
    • /
    • 2004
  • A modified removable appliance for molar distalization called C-activator was used in a 10-year old male patient with a Class II anterior deep bite malocclusion with upper arch discrepancy. The treatment plan involved correcting the Class ll relationship, distalizing both upper first molars, and regaining space for the erupting canines. The C-activator, which was used for 6 months, consisted of a labial framework formed from .036-in stainless steel wire and an acrylic monobloc. Both the closed helices of the labial framework were compressed for reactivation during the C-activator treatment period. C-activator mechanics simultaneously achieved distalization of the upper first molars into their proper positions and repositioning of the mandible. After 21 months of treatment, the correct oberbite and overjet was obtained and contributed to an Improvement in facial balance. The treatment results were stable 6 months after debonding. Fabrication and placement of the new appliance and clinical procedures are detailed, and the treatment sequence and results of this case are presented as follows.

Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position

  • Song, Jae-Won;Lim, Joong-Ki;Lee, Kee-Joon;Sung, Sang-Jin;Chun, Youn-Sic;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.46 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • Objective: Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods: Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results: In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions: This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion.

Effect of passive self-ligating bracket placement on the posterior teeth on reduction of frictional force in sliding mechanics

  • Kim, Kyu-Ry;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.46 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the static (SFF) and kinetic frictional forces (KFF) in sliding mechanics of hybrid bracket systems that involve placing a conventional bracket (CB) or active self-ligating bracket (ASLB) on the maxillary anterior teeth (MXAT) and a passive SLB (PSLB) on the maxillary posterior teeth (MXPT). Methods: The samples consisted of two thoroughbred types (group 1, anterior-CB + posterior-CB; group 2, anterior-ASLB + posterior-ASLB) and four hybrid types (group 3, anterior-CB + posterior-PSLB-type 1; group 4, anterior-CB + posterior-PSLB-type 2; group 5, anterior-ASLB + posterior-PSLB-type 1; group 6, anterior-ASLB + posterior-PSLB-type 2) (n = 13 per group). After maxillary dentition alignment and maxillary first premolars removal in the stereolithographically-made typodont system, a $0.019{\times}0.025$-inch stainless steel wire was drawn through the right quadrant of the maxillary arch at 0.5 mm/min for 5 min. The SFF and KFF were measured with a mechanical testing machine and statistical analyses were performed. Results: Four different categories of SFF and KFF were observed among all groups (all p < 0.001). Group 1 demonstrated the highest SFF and KFF; groups 4 and 3 were second and third highest, respectively. The fourth category included groups 2, 5, and 6. Placing PSLBs on the MXPT resulted in significant SFF and KFF reductions in cases with CBs on the MXAT, but not in cases with ASLBs on the MXAT. Conclusions: These data might aid in the development of a hybrid bracket system that enables low-friction sliding of an archwire through the MXPT.