DOI QR코드

DOI QR Code

3-dimensional finite element analysis of maxillary molar distalization using R-jig with TADs

TADs와 R-jig를 이용한 상악 구치 원심 이동에 관한 3차원 유한요소 분석

  • Tark, Myung-Hyun (Department of Orthodontics, Sanbon Dental Hospital, Wonkwang University) ;
  • Lee, Keunyoung (Department of Orthodontics, Sanbon Dental Hospital, Wonkwang University) ;
  • Cho, Jin-Woo (Department of General Dentistry, Daejeon Dental Hospital, Wonkwang University) ;
  • Chee, Young-Deok (Department of Oral & Maxillofacial Sugery, Sanbon Dental Hospital, Wonkwang University) ;
  • Cho, Jin-Hyoung (Department of Orthodontics, Sanbon Dental Hospital, Wonkwang University)
  • 탁명현 (원광대학교 치과대학 산본치과병원 치과교정과) ;
  • 이근영 (원광대학교 치과대학 산본치과병원 치과교정과) ;
  • 조진우 (원광대학교 치과대학 대전치과병원 통합진료과) ;
  • 지영덕 (원광대학교 치과대학 산본치과병원 구강악안면외과) ;
  • 조진형 (원광대학교 치과대학 산본치과병원 치과교정과)
  • Received : 2014.09.27
  • Accepted : 2014.11.11
  • Published : 2014.12.31

Abstract

Purpose: The purpose of this study was to investigate the differences of displacement pattern depending on type of sliding jig and application method during maxillary molar distalization with temporary anchorage devices (TADs). Materials and Methods: Maxilla with normal tooth size and arch shape was selected to create a 3-dimensional finite element model, which included the bracket, orthodontic main archwire, removable sliding jig (R-jig). The orthodontic mini-implant anchorage was set 8 mm superiorly from main archwire, buccally between the second premolar and first molar. The base experimental design was Condition 1, which was composed $0.019{\times}0.025$ inch stainless steel (SS) of wire size of R-jig, 200 gm force, un-tied state. And the other designs varied to wire size of R-jig, magnitude of force. The results are as follows. Results: As the wire size of R-jig was increased, the deformation of R-jig was decreased. However, the displacement of second molar wasn't different each other. As the force to second molar was increased, the more displacement of second molar was observed, and the more distal tipping movement, vetical displacement was observed. Conclusion: R-jig can get distal teeth movement in orthodontic treatment without side effects.

목적: 고정식 교정장치에서 removable sliding jig (R-jig)와 temporary anchorage devices (TADs)를 이용하여 상악 구치의 원심 이동 시 힘의 크기와 와이어의 단면 크기에 따른 치아 이동과 치조골에 미치는 효과의 차이를 유한요소방법을 통하여 분석하고자 한다. 연구 재료 및 방법: 정상적인 치아 크기와 악궁 형태를 가진 상악 치아와 상악 치조골을 3차원 형상 모델링하고, 브라켓, 교정용 호선 및 R-jig를 포함한 유한요소 모델을 제작하였다. 골격성 고정원인 mini-implant를 제2소구치와 제1대구치 사이 협측으로 주호선 기준 8 mm 상방 위치시키고, mini-implant를 직접 고정원으로 사용하여 R-jig에 후방력을 부여하였다. 주호선을 $0.019{\times}0.025$ inch SS로 설정하고, R-jig의 와이어 단면 크기를 $0.019{\times}0.025$ inch SS, 후방력의 크기를 200 gm, 결찰을 하지 않는 조건을 기준 조건으로 설정하였다. 그리고 R-jig의 와이어 단면 크기, 후방력의 크기를 다르게 한 조건들을 설정하여 비교하였다. 결과: R-jig의 와이어 단면 크기가 증가함에 따라 후방력에 의한 R-jig의 변형이 적게 관찰되었지만, 제2대구치의 변위량은 아주 미미한 차이를 보였다. 제2대구치에 가해지는 후방력의 크기가 증가할수록 변위량도 같이 증가하였고, 원심경사 경향과 수직 변위량도 더 커졌다. 결론: R-jig는 임상적으로 큰 부작용 없이 치아의 원심이동을 가능하게 한다.

Keywords

References

  1. Lima Filho RM, Lima AL, de Oliveira Ruellas AC. Longitudinal study of anteroposterior and vertical maxillary changes in skeletal class II patients treated with Kloehn cervical headgear. Angle Orthod 2003;73:187-93.
  2. Bondemark L, Kurol J, Bernhold M. Repelling magnets versus superelastic nickel-titanium coils in simultaneous distal movement of maxillary first and second molars. Angle Orthod 1994;64:189-98.
  3. Kalra V. The K-loop molar distalizing appliance. J Clin Orthod 1995;29:298-301.
  4. Hilgers JJ. The pendulum appliance for Class II non-compliance therapy. J Clin Orthod 1992;26:706-14.
  5. Brickman CD, Sinha PK, Nanda RS. Evaluation of the Jones jig appliance for distal molar movement. Am J Orthod Dentofacial Orthop 2000;118:526-34. https://doi.org/10.1067/mod.2000.110332
  6. Bolla E, Muratore F, Carano A, Bowman SJ. Evaluation of maxillary molar distalization with the distal jet: a comparison with other contemporary methods. Angle Orthod 2002;72:481-94.
  7. Chung KR, Park YG, Ko SJ. C-Space regainer for molar distalization. J Clin Orthod 2000;34:32-9.
  8. Fortini A, Lupoli M, Parri M. The first class appliance for rapid molar distalization. J Clin Orthod 1999;33:322-8.
  9. Joseph AA, Butchart CJ. An evaluation of the pendulum distalizing appliance. Semin Orthod 2000;6:129-35. https://doi.org/10.1053/od.2000.5901
  10. Sugawara J, Daimaruya T, Umemori M, Nagasaka H, Takahashi I, Kawamura H, Mitani H. Distal movement of mandibular molars in adult patients with the skeletal anchorage system. Am J Orthod Dentofacial Orthop 2004;125:130-8. https://doi.org/10.1016/j.ajodo.2003.02.003
  11. Byloff FK, Karcher H, Clar E, Stoff F. An implant to eliminate anchorage loss during molar distalization: a case report involving the Graz implantsupported pendulum. Int J Adult Orthodon Orthognath Surg 2000;15:129-37.
  12. Keles A, Erverdi N, Sezen S. Bodily distalization of molars with absolute anchorage. Angle Orthod 2003;73:471-82.
  13. Park HS, Lee SK, Kwon OW. Group distal movement of teeth using microscrew implant anchorage. Angle Orthod 2005;75:602-9.
  14. Kircelli BH, Pektas ZO, Kircelli C. Maxillary molar distalization with a bone-anchored pendulum appliance. Angle Orthod 2006;76:650-9.
  15. Lee YI, Cha KS, Ju JW, Lee JW. Stress analysis of multiloop edgewise arch wire with various degree of tip back bend: a study using the finite element method. Korean J Orthod 2000;30:127-42.
  16. Andrews LF. The six keys to normal occlusion. Am J Orthod 1972;62:296-309. https://doi.org/10.1016/S0002-9416(72)90268-0
  17. Tanne K, Sakuda M, Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 1987;92:499-505. https://doi.org/10.1016/0889-5406(87)90232-0
  18. Chung AJ, Kim US, Lee SH, Kang SS, Choi HI, Jo JH, Kim SC. The pattern of movement and stress distribution during retraction of maxillary incisors using a 3-D finite element method. Korean J Orthod 2007;37:98-113.
  19. Jeong HS, Sung SJ, Moon YS, Cho YS, Lim SM. Factors influencing the axes of anterior teeth during SWA en masse sliding retraction with orthodontic mini-implant anchorage: a finite element study. Korean J Orthod 2006;36:339-48.
  20. Song SE, Lim SH, Yoon YJ, Kim KW. A photoelastic evaluation of stress distribution during distal movement of upper molar. Korean J Orthod 2004;34:121-29.
  21. Burstone CJ, Pryputniewicz RJ. Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 1980;77:396-409. https://doi.org/10.1016/0002-9416(80)90105-0
  22. Murphy NC, de Alba JA, Chaconas SJ, Caputo AA. Experimental force analysis of the contraction utility arch wire. Am J Orthod 1982;82:411-7. https://doi.org/10.1016/0002-9416(82)90190-7
  23. Moss ML, Skalak R, Patel H, Sen K, Moss-Salentijn L, Shinozuka M, Vilmann H. Finite element method modeling of craniofacial growth. Am J Orthod 1985;87:453-72. https://doi.org/10.1016/0002-9416(85)90084-3
  24. Moss ML. The application of the finite element method to the analysis of craniofacial growth and form. Acta Morphol Neerl Scand 1985;23:337-56.
  25. Vanden Bulcke MM, Burstone CJ, Sachdeva RC, Dermaut LR. Location of the centers of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofacial Orthop 1987;91:375-84. https://doi.org/10.1016/0889-5406(87)90390-8