• Title/Summary/Keyword: Arc Grid

Search Result 111, Processing Time 0.022 seconds

An Extraction of Geometric Characteristics Paramenters of Watershed by Using Geographic Information System (지형정보시스템을 이용한 하천유역의 형태학적 특성인자의 추출)

  • 안상진;함창학
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.115-124
    • /
    • 1995
  • A GIS is capable of extracting various hydrological factors from DEM(digital elevation model). One of important tasks for hydrological analysis is the division of watershed. It can be an essential factor among various geometric characteristics of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using GIS technique. The manual process of tasks to obtain geometric characteristics of watershed is automated by using the functions of ARC/INFO software as GIS package. Scanned data was used for this study and it is converted to DEM data. Various forms of representation of spatial data are handled in main module and GRID module of ARC/INFO. GRID module is used on a stream in order to define watershed boundary, so it would be possible to obtain the watersheds. Also, a flow direction, stream networks and orders are generated. The results show that GIS can aid watershed management and research and surveillance. Also the geometric characteristics parameters of watershed can be quantified with ease using GIS technique and the hardsome process can be automated.

  • PDF

A Development of Auto-Calibration for Initial Soil Condition in K-DRUM Model (K-DRUM 개선을 위한 초기토양함수 자동보정기법 개발)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.71-79
    • /
    • 2009
  • In this study, a distributed rainfall-runoff model, K-DRUM, based on physical kinematic wave was developed to simulate temporal and spatial distribution of flood discharge considering grid rainfall and grid based GIS hydrological parameters. The developed model can simulate temporal and spatial distribution of surface flow and sub-surface flow during flood period, and input parameters of ASCII format as pre-process can be extracted using ArcView. Output results of ASCII format as post-process can be created to express distribution of discharge in the watershed using GIS and express discharge as animation using TecPlot. an auto calibration method for initial soil moisture conditions that have an effect on discharge in the physics based K-DRUM was additionally developed. The baseflow for Namgang Dam Watershed was analysed to review the applicability of the developed auto calibration method. The accuracy of discharge analysis for application of the method was evaluated using RMSE and NRMSE. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions of K-DRUM.

  • PDF

A Study of Land Suitability Analysis by Integrating GSIS with Artificial Neural Networks (GSIS와 인공신경망의 결합에 의한 토지적합성분석에 관한 연구)

  • 양옥진;정영동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.179-189
    • /
    • 2000
  • This study is tried to organic combination in implementing the suitability analysis of urban landuse between GSIS and ANN(Artificial Neural Network). ANN has merit that can decide rationally connectivity weights among neural network nodes through procedure of learning. It is estimated to be possible that replacing the weight among factors needed in spatial analysis of the connectivity weight on neural network. This study is composed of two kinds of neural networks to be executed. First neural network was used in the suitability analysis of landuse and second one was oriented to analyze of optimum landuse pattern. These neural networks were learned with back-propagation algorithm using the steepest gradient which is embodied by C++ program and used sigmoid function as a active function. Analysis results show landuse suitability map and optimum landuse pattern of study area consisted of residental, commercial. industrial and green zone in present zoning system. Each result map was written by the Grid format of Arc/Info. Also, suitability area presented in the suitability map and optimum landuse pattern show distribution pattern consistent with theroretical concept or urban landuse plan in aspect of location and space structure.

  • PDF

Time-varying Harmonics Measurement and Assessment of the Electric Arc Furnace Loads (시간에 따라 변하는 전기로 부하의 고조파 측정 및 평가)

  • Kim, Kyung-Chul;Jin, Seong-Eun;Park, Sang-Young;Lee, Joo-Hong;Lee, Il-Moo;Jeon, Young-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2006
  • Large steel industries have nonlinear loads including electric arc furnaces and harmonic field measurements have shown that harmonic content of a waveform varies with time. Since the large loads are supplied from the power system grid, it must be recognized that not only will the system of utility be impacted, but neighboring customer system could be impacted as well. In this paper time-varying harmonics are evaluated by international harmonic standards IEEE Std. 519 and IEC 61000-3-6 using a cumulative probablistic approach.

Urban Inundation Modeling and Its Damage Evaluation Based on Loose-coupling GIS (Loose-coupling GIS기반의 도시홍수 모의 및 피해액산정)

  • Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Considering the flood problem in urban areas, it is important to estimate disaster risk using accurate numerical analysis for inundation. In this study, it is carried out to calculate inundation depth in Samcheok city which suffered from serious flood damage in 2002. The urban flood model was developed by cording Manning n, elevation, and building's rare on ArcGIS for reducing error on data exchange, and applied for estimating flood damage by grid. This paper describes the extraction of sewer lines and buildings area, estimates its influence on flood inundation extent, and integrated 1D/2D flow to simulate inundation depth in high-density building area. This paper shows an integrated urban flood modeling including rainfall-runoff, inundation simulation, and mathematical flood damage estimation, and will serve drainage design for reducing its damage.

Development of the 120kV/70A High Voltage Switching Circuit with MOSFETs Operated by Simple Gate Drive Unit (120kV/70A MOSFETs Switch의 구동회로 개발)

  • Song In Ho;Shin H. S.;Choi C. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.707-710
    • /
    • 2002
  • A 120kV/70A high voltage switch has been installed at Korea Atomic Energy Research Institute in Taejon to supply power with Korea Superconducting Tokamak Advanced Research (KSTAR) Neutral Beam Injection (NBI) system. NBI system requires fast cutoff of the power supply voltage for protection of the grid when arc detected and fast turn-on the voltage for sustaining the beam current. Therefore the high voltage switch and arc current detection circuit are important part of the NBI power supply and there are much need for high voltage solid state switches in NBI system and a broad area of applications. This switch consisted of 100 series connected MOSFETs and adopted the proposed simple and reliable gate drive circuit without bias supply, Various results taken during the commissioning phase with a 100kW resistive load and NBI source are shown. This paper presents the detailed design of 120kV/70A high voltage MOSFETs switch and simple gate drive circuit. Problems with the high voltage switch and gate driver and solutions are also presented.

  • PDF

Extraction of the hydrologic terrain factor in n watershed using GRID analysis technology of GSIS (GSIS의 그리드 분석 기법에 의한 수문 지형인자 추출)

  • 양인태;최영재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.349-357
    • /
    • 1999
  • Hydrologic parameters vary spatially and require interpretation of maps which often vary in scale and accuracy. Data requirements can be extensive, and acquisition and manipulation of the data are time-consuming. The purpose of this study is to develop Hydrologic Terrain Factor Extract System (HTFES) using Geo-Spatial Information System(GSIS). The HTFES is a package of spatial data and menu-driven programs that allows user-interactive determination of hydrologic parameters. The program employs Arc/Info, a commercial Geo-Spatial Information System. Spatial analysis techniques were employed to define watershed outlets and to determine important hydrologic parameters. The system delineates drainage boundaries, flow paths, average watershed slope and etc. using relevant digital elevation data.

  • PDF

An Analysis of Cold Gas Flow-Field for UHV Class Interrupters (초고압 가스차단부의 냉가스 유동해석)

  • Song, Gi-Dong;Park, Gyeong-Yeop;Song, Won-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.387-394
    • /
    • 2000
  • This paper presents a method of cold gas flow-field analysis within puffer type GCB(Gas Circuit Breaker). Using this method, the entire interruption process including opening operation of GCB can be simulated successfully. In particular, the distortion problem of the grid due to the movement of moving parts can be dealt with by the fixed grid technique. The gas parameters such as temperature, pressure, density, velocity through the entire interruption process can be calculated and visualized. It was confirmed that the time variation of pressure which was calculated from the application of the method to a model GCB agreed with the experimental one. Therefore it is possible to evaluate the small current interruption capability analytically and to design the interrupter which has excellent interruption capability using the proposed method. It is expected that the proposed method can reduce the time and cost for development of GCB very much. It also will be possible to develop the hot-gas flow-field analysis program by combining the cold-gas flow field program with the arc model and to evaluate the large current interruption capability.

  • PDF

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬 내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Wavier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convective terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. Considering computation times, $\kappa$-$\varepsilon$ turbulence model with wall function is used.

Numerical Simulation of 3-Dimensional Fluid Flow and Dust Concentrations in a Steel Foundry (제강 작업장내 삼차원 유동장 및 먼지농도의 수치 모사)

  • Cho, Hyun-Ho;Hong, Mi-Ok;Cho, Seog-Yeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • The steel foundries with electric arc furnaces handling metal scraps have recently gained an attention as a potential source of dusts. The present study focuses on the analysis of dust emissions and removals during furnace charging and melting processes by commercial CFD software named FLUENT. A body fitted grid system consisting of 880,000 meshes was first generated by Gambit for the electric arc furnace with the capacity of 60 ton/cycle and then FLUENT was invoked to solve the corresponding NavierStokers equation for the momentum, temperature and dust concentration. The entire processes from metal charging to metal melting were simulated to investigate the unsteady behaviors of fluid flows and dust concentrations. The model simulation results showed that as the top of the electric arc furnace opened for metal charging, hot plumes bursted out from the furnace rose strongly by buoyance and escaped mostly through the main hood. Therefore, the capacity of main hoods determined the vent efficiency in the metal charging process. As the furnace was closed after the metal charging and the metal melting processes was followed, the hot flow stream stretching from the furnace to the main hood was dissipated fast and the flow from the inlet of the bottom of the left hand side to the main and monitoring hoods constituted the main stream. And there was only a slow flow in the right hand side of the furnace. Therefore, the dust concentrations were calculated higher in the left hand side of the furnace, which was consistent with observations.