• Title/Summary/Keyword: Arabinoxylan

Search Result 42, Processing Time 0.023 seconds

Structural Analysis of ${\alpha}$-L-Arabinofuranosidase from Thermotoga maritima Reveals Characteristics for Thermostability and Substrate Specificity

  • Dumbrepatil, Arti;Park, Jung-Mi;Jung, Tae Yang;Song, Hyung-Nam;Jang, Myoung-Uoon;Han, Nam Soo;Kim, Tae-Jip;Woo, Eui Jeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1724-1730
    • /
    • 2012
  • An ${\alpha}$-L-arabinofuranosidase (TmAFase) from Thermotoga maritima MSB8 is a highly thermostable exo-acting hemicellulase that exhibits a relatively higher activity towards arabinan and arabinoxylan, compared with other glycoside hydrolase 51 family enzymes. In the present study, we carried out the enzymatic characterization and structural analysis of TmAFase. Tight domain associations found in TmAFase, such as an inter-domain disulfide bond (Cys306 and Cys476) in each monomer, a novel extended arm (amino acids 374-385) at the dimer interface, and total 12 salt bridges in the hexamer, may account for the thermostability of the enzyme. One of the xylan binding determinants (Trp96) was identified in the active site, and a region of amino acids (374-385) protrudes out forming an obvious wall at the substrate-binding groove to generate a cavity. The altered cavity shape with a strong negative electrostatic distribution is likely related to the unique substrate preference of TmAFase towards branched polymeric substrates.

Gerneral concept of dietary fiber and it's functionality (식품 중 식이섬유(Dietary fiber)의 의미와 기능성 고찰 -식이섬유의 특성과 기능을 중심으로-)

  • Shin, Dong-Hwa
    • Food Science and Industry
    • /
    • v.52 no.1
    • /
    • pp.84-99
    • /
    • 2019
  • Dietary fiber is defined as soluble and insoluble polysaccharide consisted in the plant cell wall-associated fibers naturally occurring in fruits, vegetables, and cereal products, and of isolated fibers that are added to processed foods which are also artificially modified. There are so many difference types of dietary fibers as arabinoxylan, polydextrose chicory, oligosccharide. inulin, pectin, bran, cellulose, ${\beta}$-glucan, resistant starch and some seaweed polymers as alginate. Most of them provide many biological benefits in the intestine, as lower risk for developing coronary heart disease, stroke, hypertension, diabetes, obesity and some of the gastrointestinal disease like as colon cancer. And also lowering cholesterol levels, improves glycemic and insulin sensitivity to non-diabetic and diabetic persons including immune system. Beside of many benefits, average consumers in developed and under developing countries take far less amounts of dietary fiber that international organization recommended. Adequate intake of dietary fiber is 14g/1,000kcal base using the energy guide line of 2,000kcal/day for women and 26,000 kcal/day for men, dietary intake is 28g/day of adult women and 36g/day for adult men. The mechanisms behind the reported effects of dietary fiber on metabolic health are not fully well established. It is suggested that changes in intestinal viscosity resulting mucus increasing, macro-nutrients absorption, rate of passage of large intestinal, production of short chain fatty acids by fermentation. Production of gut hormones and changes of microbiota in intestine. It is necessary to do more research in this field in the future and combined interdisciplinary works together.

Supplementation with psyllium seed husk reduces myocardial damage in a rat model of ischemia/reperfusion

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.13 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Myocardial infarction (MI) is caused by extensive myocardial damage attributed to the occlusion of coronary arteries. Our previous study in a rat model of ischemia/reperfusion (I/R) demonstrated that administration of arabinoxylan (AX), comprising arabinose and xylose, protects against myocardial injury. In this study, we undertook to investigate whether psyllium seed husk (PSH), a safe dietary fiber containing a high level of AX (> 50%), also imparts protection against myocardial injury in the same rat model. MATERIALS/METHODS: Rats were fed diets supplemented with PSH (1, 10, or 100 mg/kg/d) for 3 d. The rats were then subjected to 30 min ischemia through ligation of the left anterior descending coronary artery, followed by 3 h reperfusion through release of the ligation. The hearts were harvested and cut into four slices. To assess infarct size (IS), an index representing heart damage, the slices were stained with 2,3,5-triphenyltetrazolium chloride (TTC). To elucidate underlying mechanisms, Western blotting was performed for the slices. RESULTS: Supplementation with 10 or 100 mg/kg/d of PSH significantly reduces the IS. PSH supplementation (100 mg/kg/d) tends to reduce caspase-3 generation and increase BCL-2/BAX ratio. PSH supplementation also upregulates the expression of nuclear factor erythroid 2-related factor 2 (NRF2), and its target genes including antioxidant enzymes such as glutathione S-transferase mu 2 (GSTM2) and superoxide dismutase 2 (SOD2). PSH supplementation upregulates some sirtuins ($NAD^+$-dependent deacetylases) including SIRT5 (a mitochondrial sirtuin) and SIRT6 and SIRT7 (nuclear sirtuins). Finally, PSH supplementation upregulates the expression of protein kinase A (PKA), and increases phosphorylated cAMP response element-binding protein (CREB) (pCREB), a target protein of PKA. CONCLUSIONS: The results from this study indicate that PSH consumption reduces myocardial I/R injury in rats by inhibiting the apoptotic cascades through modulation of gene expression of several genes located upstream of apoptosis. Therefore, we believe that PSH can be developed as a functional food that would be beneficial in the prevention of MI.

Cloning, Expression, and Characterization of a New Xylanase from Alkalophilic Paenibacillus sp. 12-11

  • Zhao, Yanyu;Meng, Kun;Luo, Huiying;Yang, Peilong;Shi, Pengjun;Huang, Huoqing;Bai, Yingguo;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.861-868
    • /
    • 2011
  • A xylanase gene, xyn7c, was cloned from Paenibacillus sp. 12-11, an alkalophilic strain isolated from the alkaline wastewater sludge of a paper mill, and expressed in Escherichia coli. The full-length gene consists of 1,296 bp and encodes a mature protein of 400 residues (excluding the putative signal peptide) that belongs to the glycoside hydrolase family 10. The optimal pH of the purified recombinant XYN7C was found to be 8.0, and the enzyme had good pH adaptability at 6.5-8.5 and stability over a broad pH range of 5.0-11.0. XYN7C exhibited maximum activity at $55^{\circ}C$ and was thermostable at $50^{\circ}C$ and below. Using wheat arabinoxylan as the substrate, XYN7C had a high specific activity of 1,886 U/mg, and the apparent $K_m$ and $V_{max}$ values were 1.18 mg/ml and 1,961 ${\mu}mol$/mg/min, respectively. XYN7C also had substrate specificity towards various xylans, and was highly resistant to neutral proteases. The main hydrolysis products of xylans were xylose and xylobiose. These properties make XYN7C a promising candidate to be used in biobleaching, baking, and cotton scouring processes.

Effects of Xylanase Supplementation on Growth Performance, Nutrient Digestibility and Non-starch Polysaccharide Degradation in Different Sections of the Gastrointestinal Tract of Broilers Fed Wheat-based Diets

  • Zhang, L.;Xu, J.;Lei, L.;Jiang, Y.;Gao, F.;Zhou, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.855-861
    • /
    • 2014
  • This experiment was performed to investigate the effects of exogenous xylanase supplementation on performance, nutrient digestibility and the degradation of non-starch polysaccharides (NSP) in different sections of the gastrointestinal tract (GIT) of broilers fed wheat-based diets. A total of 120 7-day-old Arbor Acres broiler chicks were randomly allotted to two wheat-based experimental diets supplemented with 0 or 1.0 g/kg xylanase. Each treatment was composed of 6 replicates with 10 birds each. Diets were given to the birds from 7 to 21 days of age. The results showed that xylanase supplementation did not affect feed intake, but increased body weight gain of broiler at 21 day of age by 5.8% (p<0.05) and improved feed-to-gain ratio by 5.0% (p<0.05). Xylanase significantly increased (p<0.05) ileal digestibilities of crude protein (CP) by 3.5%, starch by 9.3%, soluble NSP by 43.9% and insoluble NSP by 42.2% relative to the control group, respectively. Also, compared with the control treatment, xylanase addition increased (p<0.05) total tract digestibilities of dry matter by 5.7%, CP by 4.1%, starch by 6.3%, soluble NSP by 50.8%, and had a tendency to increase (p = 0.093) insoluble NSP by 19.9%, respectively. The addition of xylanase increased the concentrations of arabinose and xylose in the digesta of gizzard, duodenum, jejunum, and ileum (p<0.05), and the order of their concentration was ileum>jejunum>duodenum>>gizzard> caecum. The supplementation of xylanse increased ileal isomaltriose concentration (p<0.05), but did not affect the concentrations of isomaltose, panose and 1-kestose in the digesta of all GIT sections. These results suggest that supplementation of xylanase to wheat-based diets cuts the arabinoxylan backbone into small fragments (mainly arabinose and xylose) in the ileum, jejunum and duodenum, and enhances digestibilites of nutrients by decreasing digesta viscosity. The release of arabinose and xylose in the small intestine may also be the important contributors to the growth-promoting effect of xylanase in broilers fed wheat-based diets.

Novel Alkali-Tolerant GH10 Endo-${\beta}$-1,4-Xylanase with Broad Substrate Specificity from Microbacterium trichothecenolyticum HY-17, a Gut Bacterium of the Mole Cricket Gryllotalpa orientalis

  • Kim, Do Young;Shin, Dong-Ha;Jung, Sora;Kim, Hyangmi;Lee, Jong Suk;Cho, Han-Young;Bae, Kyung Sook;Sung, Chang-Keun;Rhee, Young Ha;Son, Kwang-Hee;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.943-953
    • /
    • 2014
  • The XylH gene (1,167-bp) encoding a novel hemicellulase (41,584 Da) was identified from the genome of Microbacterium trichothecenolyticum HY-17, a gastrointestinal bacterium of Gryllotalpa orientalis. The enzyme consisted of a single catalytic domain, which is 74% identical to that of an endo-${\beta}$-1,4-xylanase (GH10) from Isoptericola variabilis 225. Unlike other endo-${\beta}$-1,4-xylanases from invertebrate-symbiotic bacteria, rXylH was an alkali-tolerant multifunctional enzyme possessing endo-${\beta}$-1,4-xylanase activity together with ${\beta}$-1,3/${\beta}$-1,4-glucanase activity, which exhibited its highest xylanolytic activity at pH 9.0 and 60oC, and was relatively stable within a broad pH range of 5.0-10.0. The susceptibilities of different xylosebased polysaccharides to the XylH were assessed to be as follows: oat spelts xylan > beechwood xylan > birchwood xylan > wheat arabinoxylan. rXylH was also able to readily cleave p-nitrophenyl (pNP) cellobioside and pNP-xylopyranoside, but did not hydrolyze other pNP-sugar derivatives, xylobiose, or hexose-based materials. Enzymatic hydrolysis of birchwood xylan resulted in the product composition of xylobiose (71.2%) and xylotriose (28.8%) as end products.

Functional Components of Barley Bran with Different Particle Sizes and Cultivars (품종 및 입도별 보리 맥강의 기능성분 함량)

  • Baek, So Yune;Lee, Yoon Jeong;Jang, Gwi Young;Kim, Min Young;Oh, Nam Seok;Lee, Mi Ja;Kim, Hyun Young;Lee, Jun Soo;Jeong, Heon Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1171-1177
    • /
    • 2017
  • This study evaluated the functional components of barley bran with different particle sizes and cultivars (Dahan, Hinchalssalbori, Heukgwang, Huknuri, and Boseokchal). Barley bran divided into fractions I (<60 mesh), II (60~100 mesh), and III (>100 mesh) was collected as pearling by-products produced by an industrial process consisting of consecutive barley pearlers. Total ${\beta}-glucan$ contents of all cultivars were especially highest in fraction II. Total arabinoxylan was the highest in barley bran from Boseokchal in fraction II. Total polyphenol contents were the highest in bran from Boseokchal and Hinchalssal in fraction II, and contents ranged of 5.61~7.00 and 4.24~6.58, respectively. Total flavonoid contents of all cultivars were especially highest in fraction II. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities ranged from 2.78~7.53 mg L-ascorbic acid (AA) eq/g and 2.24~4.83 mg AA eq/g, respectively. ABTS and DPPH radical scavenging activities were the highest in barley bran from Dahan in fraction II. In this study, fraction II showed enriched functional components and has the best particle size range for enriched antioxidant activities. These results provide useful data for selection of appropriate cultivars and particle size of bran to achieve high quality barley processing.

Extraction and Physicochemical Characterization of Barley Bran $\beta$-glucan (보리겨 $\beta$-glucan의 추출 및 이화학적 특성)

  • 김선영;유정희
    • Korean journal of food and cookery science
    • /
    • v.19 no.5
    • /
    • pp.616-623
    • /
    • 2003
  • Waxy barley brans were collected during the pearling process. The extraction of $\beta$-glucan from barley bran was effected by the extraction conditions. The $\beta$-glucan content increased with temperature, but not with pH. The highest yield, 6.5%, was achieved at pH 7.0 and 55$^{\circ}C$. At pH 10 and 45$^{\circ}C$, 48.5% of the $\beta$-glucan in barley bran was recovered in the gum product, with 54.6% purity. The protein and starch contaminations were high, reaching 13.6 and 23.7%, respectively. The $\beta$-glucan content was greatest in the subaleurone and aleurone regions (bran fractions 1, 2, 3 and 4), and declined considerably toward the inner layers. A monosaccharide analysis of the purified, $\beta$-glucan, from bran fractions 1, 2, 3 and 4, indicated that glucose constituted the majority of the gum. The small amounts of the arabinose and xylose found in the gum may indicate the presence of arabinoxylans as minor constituents. The molecular weights of the $\beta$-glucans isolated from bran fractions 1,2 and 3 were found to be 4.09${\times}$10$^{5}$ ∼-4.41${\times}$10$^{5}$ . The major glycosidic linkages of the $\beta$-glucans demonstrated the presence of 2, 4, 6-Me-Glc and 2, 3, 6-Me-Glc. When flow behaviors of barley bran $\beta$-glucan were examined, $\beta$-glucan exhibited pseudoplastic fluid properties.

Changes in GABA Content of Selected Specialty Rice After Germination (발아에 따른 일부 특수미의 GABA 함량 변화)

  • Choi, Youngmin;Jeon, Geonuk;Kong, Suhyun;Lee, Junsoo
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.154-158
    • /
    • 2009
  • The purposes of this work were to investigate the changes in GABA content of six different rice cultivars along with viatmin E content and antioxidant activity after germination. Brown rice was soaked for 24 hr at 25$^{\circ}C$ and then germinated at 37$^{\circ}C$ for 48 hr. The content of GABA and vitamin E in the rice samples was measured by using spectrophotometeric and HPLC methods, respectively. Antioxidant activity was measured by ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging methods. GABA and vitamin E contents were significantly increased after germination while no significant change in the antioxidant activity was observed. Among the samples tested, Geunnun cultivar contained the highest GABA content before and after germination. On the other hand, Sinmyungheugchal cultivar showed the highest content of vitamin E and antioxidant activity compared to other rice cultivars. In conclusion, the germinated rice with high GABA content can be used for a functional ingredient in rice processing industry.

Immunostimulatory activity and intracellular signaling pathways of a rhamnogalcaturonan II polysaccharide isolated from ginseng berry (인삼열매로부터 분리한 Rhamnogalacturonan II 다당의 면역활성과 세포 내 신호전달 기작 규명)

  • Cha, Ha Young;Son, Seung-U;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.722-730
    • /
    • 2021
  • In this study, we aimed to elucidate the intracellular signaling pathways for macrophage activation by the polysaccharide GBW-II purified from ginseng berry. GBW-II consists of 14 different sugars, including rarely observed sugars such as 2-O-methyl-xylose, apiose, aceric acid, 2-keto-3-deoxy-D-manno-2-octulosonic acid, and 2-keto-3-deoxy-D-lyxo-2-heptulosaric acid, which are typical RG-II component sugars. GBW-II enhanced the production of IL-6 and TNF-α in RAW 264.7 cells. In experiments evaluating specific inhibitor activity, it was found that the production of IL-6 was suppressed by inhibitors of SB, PD, and BAY, and the production of TNF-α was suppressed by PD and BAY. The experiments with neutralizing antibodies showed that TLR4 was involved in the stimulation of IL-6 production by GBW-II in RAW 264.7 cells, whereas TNF-α production was regulated through SR and TLR2. These results suggest that GBW-II activates the MAPK and NF-κB pathways via several macrophage receptors, including SR, TLR2, and TLR4, and subsequently induces the secretion of IL-6 and TNF-α.