DOI QR코드

DOI QR Code

Novel Alkali-Tolerant GH10 Endo-${\beta}$-1,4-Xylanase with Broad Substrate Specificity from Microbacterium trichothecenolyticum HY-17, a Gut Bacterium of the Mole Cricket Gryllotalpa orientalis

  • Kim, Do Young (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Shin, Dong-Ha (Insect Biotech Co. Ltd.) ;
  • Jung, Sora (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Hyangmi (Microbial Resource Center, KRIBB) ;
  • Lee, Jong Suk (Gyeonggi Bio-Center, Gyeonggi Institute of Science & Technology Promotion) ;
  • Cho, Han-Young (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Bae, Kyung Sook (Microbial Resource Center, KRIBB) ;
  • Sung, Chang-Keun (Department of Food Science and Technology, Chungnam National University) ;
  • Rhee, Young Ha (Department of Microbiology and Molecular Biology, Chungnam National University) ;
  • Son, Kwang-Hee (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Ho-Yong (Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2014.05.15
  • Accepted : 2014.05.24
  • Published : 2014.07.28

Abstract

The XylH gene (1,167-bp) encoding a novel hemicellulase (41,584 Da) was identified from the genome of Microbacterium trichothecenolyticum HY-17, a gastrointestinal bacterium of Gryllotalpa orientalis. The enzyme consisted of a single catalytic domain, which is 74% identical to that of an endo-${\beta}$-1,4-xylanase (GH10) from Isoptericola variabilis 225. Unlike other endo-${\beta}$-1,4-xylanases from invertebrate-symbiotic bacteria, rXylH was an alkali-tolerant multifunctional enzyme possessing endo-${\beta}$-1,4-xylanase activity together with ${\beta}$-1,3/${\beta}$-1,4-glucanase activity, which exhibited its highest xylanolytic activity at pH 9.0 and 60oC, and was relatively stable within a broad pH range of 5.0-10.0. The susceptibilities of different xylosebased polysaccharides to the XylH were assessed to be as follows: oat spelts xylan > beechwood xylan > birchwood xylan > wheat arabinoxylan. rXylH was also able to readily cleave p-nitrophenyl (pNP) cellobioside and pNP-xylopyranoside, but did not hydrolyze other pNP-sugar derivatives, xylobiose, or hexose-based materials. Enzymatic hydrolysis of birchwood xylan resulted in the product composition of xylobiose (71.2%) and xylotriose (28.8%) as end products.

Keywords

References

  1. Adlakha N, Rajagopal R, Kumar S, Reddy VS, Yazdani SS. 2011. Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium. Appl. Environ. Microbiol. 77: 4859-4866. https://doi.org/10.1128/AEM.02808-10
  2. Ali MK, Rudolph FB, Bennett GN. 2005. Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824. J. Ind. Microbiol. Biotechnol. 32: 12-18. https://doi.org/10.1007/s10295-004-0192-z
  3. Brune A, Friedrich M. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3: 263-269. https://doi.org/10.1016/S1369-5274(00)00087-4
  4. Calderon-Cortes N, Quesada M, Watanabe H, Cano- Camacho H, Oyama K. 2012. Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu. Rev. Evol. Syst. 43: 45-71. https://doi.org/10.1146/annurev-ecolsys-110411-160312
  5. Cardona CA, Quintero JA, Paz IC. 2010. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101: 4754-4766. https://doi.org/10.1016/j.biortech.2009.10.097
  6. Cazemier A E, V erdoes JC, v an O oyen A JJ, Op den Camp HJM. 1999. Molecular and biochemical characterization of two xylanase-encoding genes from Cellulomonas pachnodae. Appl. Environ. Microbiol. 65: 4099-4107.
  7. Chen S, Kaufman MG, Miazgowicz KL, Bagdasarian M. 2013. Molecular characterization of a cold-active recombinant xylanase from Flavobacterium johnsoniae and its applicability in xylan hydrolysis. Bioresour. Technol. 128: 145-155. https://doi.org/10.1016/j.biortech.2012.10.087
  8. Cheng H-L, Tsai C-Y, Chen H-J, Yang S-S, Chen Y-C. 2009. The identification, purification, and characterization of STXF10 expressed in Streptomyces thermonitrificans NTU-88. Appl. Microbiol. Biotechnol. 82: 681-689. https://doi.org/10.1007/s00253-008-1803-9
  9. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
  10. Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK. 2012. A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J. Ind. Microbiol. Biotechnol. 39: 851-860. https://doi.org/10.1007/s10295-012-1093-1
  11. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Rev. Microbiol. 6: 121-131. https://doi.org/10.1038/nrmicro1817
  12. Fontes CMGA, Gilbert HJ, Hazlewood GP, Clarke JH, Prates JAM, Mckie VA, et al. 2000. A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology 146: 1959-1967. https://doi.org/10.1099/00221287-146-8-1959
  13. Gallardo O, Diaz P, Pastor FIJ. 2003. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Appl. Microbiol. Biotechnol. 61: 226-233. https://doi.org/10.1007/s00253-003-1239-1
  14. Gírio FM, Fonseca C, Carvalheiro F, Duarte S, Marques S, Bogel-Lukasik R. 2010. Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. 101: 4775-4800. https://doi.org/10.1016/j.biortech.2010.01.088
  15. Gupta N, Vohra RM, Hoondal GS. 1992. A thermostable extracellular xylanase from alkalophilic Bacillus sp. NG-27. Biotechnol. Lett. 14: 1045-1046. https://doi.org/10.1007/BF01021056
  16. Heo S, Kwak J, Oh H-W, Park D-S, Bae KS, Shin D-H, Park H-Y. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759.
  17. Huang S, Sheng P, Zhang H. 2012. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int. J. Mol. Sci. 13: 2563- 2577. https://doi.org/10.3390/ijms13032563
  18. Keskar SS, Srinivasan MC, Deshpande VV. 1989. Chemical modification of a xylanase from a thermotolerant Streptomyces: evidence for essential tryptophan and cysteine residues at the active site. Biochem. J. 261: 49-55. https://doi.org/10.1042/bj2610049
  19. Kim DY, Han MK, Park D-S, Lee JS, Oh H-W, Shin D-H, et al. 2009. Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl. Environ. Microbiol. 75: 7275- 7279. https://doi.org/10.1128/AEM.01075-09
  20. Kim DY, Han MK, Oh H-W, Bae KS, Jeong T-S, Kim SU, et al. 2010. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresour. Technol. 101: 8814-8821. https://doi.org/10.1016/j.biortech.2010.06.023
  21. Kim DY, Han MK, Oh H-W, Park D-S, Kim S-J, Lee S-G, et al. 2010. Catalytic properties of a GH10 endo-$\beta$-1,4-xylanase from Streptomyces thermocarboxydus HY-15 isolated from the gut of Eisenia fetida. J. Mol. Catal. B Enzym. 62: 32-39. https://doi.org/10.1016/j.molcatb.2009.08.015
  22. Kim DY, Ham S-J, Kim HJ, Kim J, Lee M-H, Cho H-Y, et al. 2012. Novel modular endo-$\beta$-1,4-xylanase with transglycosylation activity from Cellulosimicrobium s p. s train HY-13 that i s homologous to inverting GH family 6 enzymes. Bioresour. Technol. 107: 25-32. https://doi.org/10.1016/j.biortech.2011.12.106
  23. Li N, Meng K, Wang Y, Shi P, Luo H, Bai Y, et al. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240. https://doi.org/10.1007/s00253-008-1533-z
  24. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. DOI: 10.1093/nar/gkt1178.
  25. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  26. Mamo G, Hatti-Kaul R, Mattiasson B. 2006. A thermostable alkaline active endo-$\beta$-1,4-xylanase from Bacillus halodurans S7: purification and characterization. Enzyme Microb. Technol. 39: 1492-1498. https://doi.org/10.1016/j.enzmictec.2006.03.040
  27. MacLeod AM, Lindhorst T, Withers SG, Warren RAJ. 1994. The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: evidence from detailed kinetic studies of mutants. Biochemistry 33: 6371-6376. https://doi.org/10.1021/bi00186a042
  28. Morrison M, Pope PB, Denman SE, McSweeney CS. 2009. Plant biomass degradation by gut microbiomes: more of the same or something new? Curr. Opin. Biotechnol. 20: 358-363. https://doi.org/10.1016/j.copbio.2009.05.004
  29. Oh H-W, Heo S-Y, Kim DY, Park D-S, Bae KS, Park H-Y. 2008. Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12. Antonie van Leeuwenhoek 93: 437-442. https://doi.org/10.1007/s10482-007-9210-2
  30. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
  31. Roberge M, Shareck F, Morosoli R, Kluepfel D, Dupont C. 1999. Characterization of active-site aromatic residues in xylanase A from Streptomyces lividans. Protein Eng. 12: 251-257. https://doi.org/10.1093/protein/12.3.251
  32. Shi H, Zhang Y, Huang Y, Wang L, Wang Y, Ding H, Wang F. 2013. A novel highly thermostable xylanase stimulated by $Ca^{2+}$ from Thermotoga thermarum: cloning, expression and characterization. Biotechnol. Biofuels 6: 26. https://doi.org/10.1186/1754-6834-6-26
  33. Shi P, Tian J, Yuan T, Liu X, Huang H, Bai Y, et al. 2010. Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain. Appl. Environ. Microbiol. 76: 3620-3624. https://doi.org/10.1128/AEM.00345-10
  34. Singh RK, Tiwari MK, Kim D, Kang YC, Ramachandran P, Lee J-K. 2013. Molecular cloning and characterization of a GH11 endoxylanase from Chaetomium globosum, and its use in enzymatic pretreatment of biomass. Appl. Microbiol. Biotechnol. 97: 7205-7214. https://doi.org/10.1007/s00253-012-4577-z
  35. Usui K, Suzuki T, Akisaka T, Kawai K. 2003. A cytoplasmic xylanase (XynX) of Aeromonas caviae ME-1 is released from the cytoplasm to the periplasm by osmotic downshock. J. Biosci. Bioeng. 95: 488-495. https://doi.org/10.1016/S1389-1723(03)80050-6
  36. Wackett LP. 2008. Biomass to fuels via microbial transformations. Curr. Opin. Chem. Biol. 12: 187-193. https://doi.org/10.1016/j.cbpa.2008.01.025
  37. Yan Q, Hao S, Jiang Z, Chen W. 2009. Properties of a xylanase from Streptomyces matensis being suitable for xylooligosaccharides production. J. Mol. Catal. B Enzym. 58: 72-77. https://doi.org/10.1016/j.molcatb.2008.11.010
  38. Zhou J, Huang H, Meng K, Shi P, Wang Y, Luo H, et al. 2009. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl. Microbiol. Biotechnol. 85: 323-333. https://doi.org/10.1007/s00253-009-2081-x
  39. Zolotnitsky G, Cogan U, Adir N, Solomon V, Shoham G, Shoham Y. 2004. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. Proc. Natl. Acad. Sci. USA 101: 11275-11280. https://doi.org/10.1073/pnas.0404311101

Cited by

  1. Genetic and functional characterization of an extracellular modular GH6 endo-β-1,4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13 vol.109, pp.1, 2014, https://doi.org/10.1007/s10482-015-0604-2
  2. Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Coprinus cinereus: Roles of C-Terminal Basic Amino Acid-Rich Extension in Its SDS Resistance, Thermostability, and vol.27, pp.4, 2014, https://doi.org/10.4014/jmb.1609.09011
  3. Draft Genome Sequence of Microbacterium oleivorans Strain A9, a Bacterium Isolated from Chernobyl Radionuclide-Contaminated Soil vol.5, pp.14, 2014, https://doi.org/10.1128/genomea.00092-17
  4. In vitro fermentation of arabinoxylan from oat (Avena sativa L.) by Pekin duck intestinal microbiota vol.9, pp.2, 2014, https://doi.org/10.1007/s13205-019-1571-5
  5. Improved Draft Genome Sequence of Microbacterium sp. Strain LKL04, a Bacterial Endophyte Associated with Switchgrass Plants vol.8, pp.45, 2019, https://doi.org/10.1128/mra.00927-19
  6. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-60850-5
  7. Characterization of Thermophilic Lignocellulolytic Microorganisms in Composting vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.697480
  8. Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-Xylanase from an Antarctic Soil Bacterium, Duganella sp. PAMC 27433 vol.11, pp.5, 2014, https://doi.org/10.3390/biom11050680
  9. Novel Bi-Modular GH19 Chitinase with Broad pH Stability from a Fibrolytic Intestinal Symbiont of Eisenia fetida, Cellulosimicrobium funkei HY-13 vol.11, pp.11, 2014, https://doi.org/10.3390/biom11111735