• 제목/요약/키워드: Aquatic environments

검색결과 263건 처리시간 0.025초

의약물질의 환경오염과 환경보건 (Pharmaceuticals in Environment and Their Implication in Environmental Health)

  • 최경호;김판기;박정임
    • 한국환경보건학회지
    • /
    • 제35권6호
    • /
    • pp.433-446
    • /
    • 2009
  • Pharmaceuticals in the aquatic environment are trace contaminants of growing importance in environmental health due to their physiologically active nature. Pharmaceuticals could affect non-target species and might eventually damage sustainability of susceptible populations in the ecosystem. Potentials for health consequences among susceptible human population cannot be ruled out since long-term exposure to cocktails of pharmaceuticals, which might be present in drinking water, is possible. Selection of antibiotic resistant microorganisms is of another concern. In order to understand, and if needed, to properly address the environmental health issues of pharmaceutical residues, knowledge gaps need to be filled. Knowledge gaps exist in many important areas such as prioritization of target pharmaceuticals for further risk studies, occurrence patterns in different environments, chronic toxicities, and toxicities of pharmaceutical mixtures. Appropriate treatment technologies for drinking water and wastewater could be developed when they are deemed necessary. One of the simplest, yet most efficient measures that could be undertaken is to implement a return program for unused or expired drugs. In addition, implementation of environmental risk assessment frameworks for pharmaceuticals would make it possible to efficiently manage potential environmental health problems associated with pharmaceutical residues in the environment.

Seasonal Changes in Cyanobacterial Diversity of a Temperate Freshwater Paldang Reservoir (Korea) Explored by using Pyrosequencing

  • Boopathi, Thangavelu;Wang, Hui;Lee, Man-Duck;Ki, Jang-Seu
    • 환경생물
    • /
    • 제36권3호
    • /
    • pp.424-437
    • /
    • 2018
  • The incidence of freshwater algal bloom has been increasing globally in recent years and poses a major threat to environmental health. Cyanobacteria are the major component of the bloom forming community that must be monitored frequently. Their morphological identities, however, have remained elusive, due to their small size in cells and morphological resemblances among species. We have analyzed molecular diversity and seasonal changes of cyanobacteria in Paldang Reservoir, Korea, using morphological and 16S rRNA pyrosequencing methods. Samples were collected at monthly intervals from the reservoir March-December 2012. In total, 40 phylotypes of cyanobacteria were identified after comparing 49,131 pyrosequence reads. Cyanobacterial genera such as Anabaena, Aphanizomenon, Microcystis and Synechocystis were predominantly present in samples. However, the majority of cyanobacterial sequences (65.9%) identified in this study were of uncultured origins, not detected morphologically. Relative abundance of cyanobacterial sequences was observed as high in August, with no occurrence in March and December. These results suggested that pyrosequencing approach may reveal cyanobacterial diversity undetected morphologically, and may be used as reference for studying and monitoring cyanobacterial communities in aquatic environments.

Evaluation of a moving bed biofilm reactor for simultaneous atrazine, carbon and nutrients removal from aquatic environments: Modeling and optimization

  • Derakhshan, Zahra;Ehrampoush, Mohammad Hassan;Mahvi, Amir Hossein;Dehghani, Mansooreh;Faramarzian, Mohammad;Ghaneian, Mohammad Taghi;Mokhtari, Mehdi;Ebrahimi, Ali Asghar;Fallahzadeh, Hossein
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.219-230
    • /
    • 2018
  • The present study examined a moving bed biofilm reactor (MBBR) bioreactor on a laboratory scale for simultaneous removal of atrazine, organic carbon, and nutrients from wastewater. The maximum removal efficiency of atrazine, chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN) were 83.57%, 90.36%, 90.74% and 87.93 respectively. Increasing salinity up to 40 g/L NaCl in influent flow could inhibit atrazine biodegradation process strongly in the MBBR reactor.Results showed that MBBR is so suitable process for efficiently biodegrading of atrazine and nitrogen removal process was based on the simultaneous nitrification-denitrification (SND) process.

Advancement of Clay and Clay-based Materials in the Remediation of Aquatic Environments Contaminated with Heavy Metal Toxic Ions and Micro-pollutants

  • Lalhmunsiama, Lalhmunsiama;Malsawmdawngzela, Ralte;Vanlalhmingmawia, Chhakchhuak;Tiwari, Diwakar;Yoon, Yiyong
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.502-522
    • /
    • 2022
  • Clay minerals are natural materials that show widespread applications in various branches of science, including environmental sciences, in particular the remediation of water contaminated with various water pollutants. Modified clays and minerals have attracted the attention of researchers in the recent past since the modified materials are seemingly more useful and efficient for removing emerging water contaminants. Therefore, modified engineered materials having multi-functionalities have received greater interest from researchers. The advanced clay-based materials are highly effective in the remediation of water contaminated with organic and inorganic contaminants, and these materials show enhanced selectivity towards the specific pollutants. The review inherently discusses various methods employed in the modification of clays and addresses the challenges in synthesizing the advanced engineered materials precursor to natural clay minerals. The changes in physical and chemical properties, as investigated by various characterization techniques before and after the modifications, are broadly explained. Further, the implications of these materials for the decontamination of waterbodies as contaminated with potential water pollutants are extensively discussed. Additionally, the insights involved in the removal of organic and inorganic pollutants are discussed in the review. Furthermore, the future perspectives and specific challenges in the scaling up of the treatment methods in technology development are included in this communication.

México: Ambiente, cultura y sociedad. Un análisis desde la perspectiva del modelo RECREA

  • Perez, Jose Isabel Juan;Michel, Gerardo Gomez
    • 이베로아메리카
    • /
    • 제22권2호
    • /
    • pp.153-179
    • /
    • 2020
  • In the Mexican territory the cultural diversity is associated with the environmental diversity, this is demonstrated by the presence of native groups that inhabit the regions of the country, which are characterized by the management of various natural resources that they obtain from the terrestrial and aquatic environments of each of the regions. Through the RECREA Model: complex thinking, information and communication technologies and research-action, complemented with fundamentals of geography, environmental geography, cultural ecology, field work and cartographic information, we explained and analyzed the association between environmental diversity and cultural diversity to demonstrate that in Mexico there are still links between the environment, society and culture, a situation that determines the existence of human groups that subsist in the context of a global capitalist system that extracts in an unsustainable way natural resources. Based on these results, an instructional model is made to put it to practice with international students, in this case from Japan and South Korea, to allow the observation of its functionality in transmitting the aforementioned results on environmental and cultural diversity in Mexico during the teaching-learning process.

The Plant-Associated Flavobacterium: A Hidden Helper for Improving Plant Health

  • Hyojun Seo;Ju Hui Kim;Sang-Moo Lee;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.251-260
    • /
    • 2024
  • Flavobacterium is a genus within the phylum Bacteroidota that remains relatively unexplored. Recent analyses of plant microbiota have identified the phylum Bacteroidota as a major bacterial group in the plant rhizosphere. While Flavobacterium species within the phylum Bacteroidota have been recognized as pathogens in the aquatic habitats, microbiome analysis and the characterization of novel Flavobacterium species have indicated the great diversity and potential of their presence in various environments. Many Flavobacterium species have positively contribute to plant health and development, including growth promotion, disease control, and tolerance to abiotic stress. Despite the well-described beneficial interactions of the Flavobacterium species with plants, the molecular mechanisms and bacterial determinants underlying these interactions remain unclear. To broaden our understanding of the genus Flavobacterium's role in plant health, we review the recent studies focusing on their ecological niche, functional roles, and determinants in plant-beneficial interactions. Additionally, this review discusses putative mechanisms explaining the interactions between plants and Flavobacterium. We have also introduced the importance of future research on Flavobacterium spp. and its potential applications in agriculture.

Enhanced alizarin removal from aqueous solutions using zinc Oxide/Nickel Oxide nano-composite

  • Basma E. Jasim;Ali J. A. Al-Sarray;Rasha M. Dadoosh
    • 분석과학
    • /
    • 제37권1호
    • /
    • pp.39-46
    • /
    • 2024
  • Alizarin dye, a persistent and hazardous contaminant in aquatic environments, presents a pressing environmental concern. In the quest for efficient removal methods, adsorption has emerged as a versatile and sustainable approach. This study focuses on the development and application of Zinc Oxide/Nickel Oxide (ZnO/NiO) nano-composites as adsorbents for alizarin dye removal. These semiconducting metal oxide nano-composites exhibit synergistic properties, offering enhanced adsorption capabilities. Key parameters affecting alizarin removal, such as contact time, adsorbent dosage, pH, and temperature, were systematically investigated. Notably, the ZnO/NiO nano-composite demonstrated superior performance, with a maximum alizarin removal percentage of 76.9 % at pH 6. The adsorption process followed a monolayer pattern, as suggested by the Langmuir model. The pseudo-second-order kinetics model provided a good fit to the experimental data. Thermodynamic analysis indicated that the process is endothermic and thermodynamically favorable. These findings underscore the potential of ZnO/NiO nano-composites as effective and sustainable adsorbents for alizarin dye removal, with promising applications in wastewater treatment and environmental remediation.

해양으로 배출되는 실리콘계 소포제의 생태독성 연구 (A Study on the Eco-Toxicity of Silicone-Based Antifoaming Agents Discharging into Marine Environments)

  • 김태원;김영윤;박미옥;전미해;손민호
    • 해양환경안전학회지
    • /
    • 제25권1호
    • /
    • pp.81-88
    • /
    • 2019
  • 본 연구는 실리콘계 소포제가 해양으로 배출되었을 때 소포제 내에 존재하는 주요 성분들이 해양 저서환경에 서식하는 생물에게 미치는 영향을 알아보기 위해 실리콘 및 알코올계 소포제에 대해 저서성단각류(Monocorophium acherusicum)와 발광박테리아(Vibrio fischeri)를 이용하여 해양생태독성실험을 수행하였고 실리콘계 소포제의 주요성분인 디메틸폴리실록산(PDMS)에 대한 수중생물 독성영향을 조사하였다. 실리콘 및 알코올계 소포제에 대한 발광박테리아와 저서성단각류를 이용한 독성실험결과, 실험생물별 독성영향은 발광박테리아가 저서성 단각류에 비해 알코올계 소포제에서 최대 9배 까지 민감한 독성영향을 보였으며 소포제 종류별 독성영향은 실리콘계 소포제가 알코올계 소포제에 비해 최대 400배 이상 높은 독성영향이 나타났다. 실리콘계 소포제의 주요성분인 PDMS가 수중생물에 미치는 영향을 조사한 결과, 식물플랑크톤, 무척추동물 및 어류에 대한 반수치사농도($LC_{50}$)및 반수영향농도($EC_{50}$)값은 $10{\sim}44,500{\mu}g/L$의 범위로 나타났다. 물질의 정성적인 특성을 나타내는 지표인 PBT(P: persistency, B: bioaccumulation, T: toxicity)특성을 PDMS에 적용한 결과, 지속성(P)과 생물농축성(B)의 특성을 가지는 것으로 나타나 PDMS가 해양으로 배출될 경우 생물농축 및 먹이사슬을 통한 상위 영양단계로 축적될 가능성이 존재하며 저서생물에게 부정적인 영향을 미칠 수 있을 것으로 나타났다. 본 연구결과로 향후 실제 해양으로 배출되는 다양한 소포제가 해양생태계에 미치는 영향조사시 소포제 내 주요성분을 고려한 보다 객관적이고 과학적인 위해성평가에 기초자료로 활용될 수 있을 것으로 기대된다.

병원성 비브리오균과 동물성 플랑크톤과의 관계에 관한 연구 (Relationship between Pathogenic Vibrios and Zooplankton Biomass in Coastal Area, Korea)

  • 장동석;김창훈;유홍식;김신희;정은탁;신일식
    • 한국수산과학회지
    • /
    • 제29권5호
    • /
    • pp.557-566
    • /
    • 1996
  • 병원성 비브리오균은 생선회를 즐겨 먹는 우리나라의 식습관 때문에 여름철 식중독 원인 세균 중에서 제일 빈도가 높은 세균이다. 특히 매년 여름철이면 콜레라 파동으로 활선어 판매금지 조치 등으로 생산어민 및 생선 횟집 경영자들의 경제적 손실은 매우 크다. 더구나 콜레라균이 해수에서 동물성 플랑크톤에 부착하여 월동한다는 보고도 있어서 실제로 우리 나라 연안 해수에서 콜레라균이 플랑크톤에 부착하여 월동할 가능성이 있는지를 검토한 연구 결과를 보고하는 바이다. 1. 우리 나라 남해안의 해수, 어패류 및 동물성 플랑크톤에서 V. parahaemolyticus, V. vulnificus, V. cholerae non O1, V. mimicus는 검출되었으나 V. cholerae O1은 검출되지 않았다. 2. 동물성 플랑크톤은 해수에서 각종 병원성 비브리오균의 증식이나 부착, 생잔율에 긍정적 영향을 미치고 있었다. 3. 병원성 비브리오균의 동물성 플랑크톤에의 부착율은 대장균에 비하여 높은데 염분 농도 $5\%_{\circ}$ 일 경우에는 $60\%$이상으로 높았으나, 염분 농도가 증가할수록 비례적으로 흡착율은 감소하였으며 염분 농도 $20\%_{\circ}$이상, pH 8.0 이상에서는 급격히 감소하였다. 4. 병원성 비브리오균은 $25^{\circ}C$의 해수에서는 플랑크톤이 존재할 때가 그렇지 않을 때 보다 균의 생잔율이 크게 나타났으나, $0^{\circ}C$에서는 플랑크톤의 존재 유무에 관계없이 $2\~3$일 이내에 균수가 급격히 감소되었다. 5. 미세 조류나 사멸시킨 동물성 플랑크톤의 존재가 병원성 비브리오균의 증식이나 생존에는 영향을 미치지 못하였다.

  • PDF

제약단지 인접 지역 지표수의 잔류 의약물질 생태위해성평가 (Ecological Risk Assessment of Pharmaceuticals in the Surface Water Near a Pharmaceutical Manufacturing Complex in Korea)

  • 박수현;강하병;신혜수;유일한;최경호;고영림;박경화;김경태;지경희
    • 한국환경보건학회지
    • /
    • 제46권1호
    • /
    • pp.45-64
    • /
    • 2020
  • Objectives: Limited information is available on the presence and associated ecological risks of pharmaceutical residues in aquatic environments near pharmaceutical manufacturing areas in Korea. In this study, we investigated the current state of pharmaceutical contamination and its associated ecological risks in streams near a pharmaceutical manufacturing complex. Methods: Seven pharmaceuticals (acetaminophen, clarithromycin, diclofenac, diphenhydramine, ibuprofen, mefenamic acid and roxithromycin) were measured in water samples collected from the streams near a pharmaceutical manufacturing complex. A predicted no-effect concentration (PNEC) was derived using either the assessment factor method or species sensitivity distribution method. In addition, a hazard quotient for each pharmaceutical was calculated by dividing its measured environmental concentration by its PNEC. Results: Samples collected downstream from the wastewater treatment plant (WWTP) had higher concentrations of pharmaceuticals than those collected from the reference site (upstream). Moreover, pharmaceutical concentrations were greater in ambient water than in the final effluent from the WWTP, which suggested that non-point sources were contributing to the contamination of the ambient water environment. Some of the target pharmaceuticals exhibited a hazard quotient >1, indicating that their potential ecological effects on the aquatic environment near the pharmaceutical industrial area should not be ignored. Conclusion: This study demonstrated that the pharmaceutical manufacturing area was contaminated with residual drugs, and that there was a possible non-point source near the WWTP effluent discharge area. The results of this study will aid in the development of management plans for pharmaceuticals, particularly in hotspots such as pharmaceutical industrial sites and their vicinities.