• 제목/요약/키워드: Approximate solution

검색결과 657건 처리시간 0.022초

평판의 층류 막응축에서 복합열전달에 대한 근사해 (Approximate Solution for Conjugate Heat Transfer of Laminar Film Condensation on a Flat Plate)

  • 이억수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.509-518
    • /
    • 2005
  • Liquid film thickness in laminar film condensation for flow over a flat plate generally is so thin that both fluid acceleration and thermal convection within the liquid film can be neglected. An integral solution method is proposed to solve the conjugate problems of laminar film condensation and heat conduction in a solid wall. It is found that approximate solutions of the governing equations involve four physical parameters to describe the conjugate heat transfer problem for laminar film condensation. It is shown that the effects of interfacial shear. mass transfer and local heat transfer are strongly dependent on the thermo-physical properties of the working fluids and the Jacob number.

A novel approximate solution for nonlinear problems of vibratory systems

  • Edalati, Seyyed A.;Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.1039-1049
    • /
    • 2016
  • In this research, an approximate analytical solution has been presented for nonlinear problems of vibratory systems in mechanical engineering. The new method is called Variational Approach (VA) which is applied in two different high nonlinear cases. It has been shown that the presented approach leads us to an accurate approximate analytical solution. The results of variational approach are compared with numerical solutions. The full procedure of the numerical solution is also presented. The results are shown that the variatioanl approach can be an efficient and practical mathematical tool in field of nonlinear vibration.

On the Error Bound of the Approximate Solution of a Nonclassically Damped Linear System under Periodic Excitations

  • Hwang, Jai-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.45-52
    • /
    • 1996
  • One common procedure in the approximate solution of a nonclassically damped linear system is to neglect the off-diagonal elements of the normalized damping matrix. A tight error bound, which can be computed with relative ease, is given for this method of solution. The role that modal coupling plays in the control of error is clarified. If the normalized damping matrix is strongly diagonally dominant, it is shown that adequate frequency separation is not necessary to ensure small errors.

  • PDF

SMOOTHING APPROXIMATION TO l1 EXACT PENALTY FUNCTION FOR CONSTRAINED OPTIMIZATION PROBLEMS

  • BINH, NGUYEN THANH
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.387-399
    • /
    • 2015
  • In this paper, a new smoothing approximation to the l1 exact penalty function for constrained optimization problems (COP) is presented. It is shown that an optimal solution to the smoothing penalty optimization problem is an approximate optimal solution to the original optimization problem. Based on the smoothing penalty function, an algorithm is presented to solve COP, with its convergence under some conditions proved. Numerical examples illustrate that this algorithm is efficient in solving COP.

Economic production quantity with expontial deterioration

  • Hwang, Hark;Kim, Kap-Hwan
    • 한국경영과학회지
    • /
    • 제4권1호
    • /
    • pp.53-58
    • /
    • 1979
  • Production lot sizing problem for a system with exponentially decaying inventory is considered. From the exact cost function developed under conditions of constant demand and no shortages permitted, an approximate optimal solution is derived. The formula is compared with those of the exact solution obtained from numerical procedure and other existing approximate solution. Finally some notable properties of the formula are investigated and shown to be consistent.

  • PDF

등온가열에 의한 접촉융해의 초기 과도과정에 대한 근사적 해석해 (An approximate analytical solution for the initial transient process of close-contact melting on an isothermal surface)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1710-1719
    • /
    • 1997
  • An approximate analytical solution for the initial transient process of close-contact melting occurring between a phase change material kept at its melting temperature and an isothermally heated flat surface is derived. The model is so developed that it can cover both rectangular and circular cross-sectional solid blocks. Normalization of simplified model equations in reference to the steady solution enables the solution to be expressed in a generalized form depending on the liquid-to-solid density ratio only. A selected result shows an excellent agreement with the previously reported numerical data, which justifies the present approach. The solution appears to be capable of describing all the fundamental characteristics of the transient process. In particular, dependence of the solid descending velocity oft the density ratio at the early stage of melting is successfully resolved. The effects of other parameters except the density ratio on the transient behaviors are efficiently represented via the steady solution implied in the normalized result. A simple approximate method for estimating the effect of convection on heat transfer across the liquid film is also proposed.

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.

AN APPROXIMATE ALTERNATING LINEARIZATION DECOMPOSITION METHOD

  • Li, Dan;Pang, Li-Ping;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1249-1262
    • /
    • 2010
  • An approximate alternating linearization decomposition method, for minimizing the sum of two convex functions with some separable structures, is presented in this paper. It can be viewed as an extension of the method with exact solutions proposed by Kiwiel, Rosa and Ruszczynski(1999). In this paper we use inexact optimal solutions instead of the exact ones that are not easily computed to construct the linear models and get the inexact solutions of both subproblems, and also we prove that the inexact optimal solution tends to proximal point, i.e., the inexact optimal solution tends to optimal solution.

Closed-form solution of axisymmetric deformation of prestressed Föppl-Hencky membrane under constrained deflecting

  • Lian, Yong-Sheng;Sun, Jun-Yi;Dong, Jiao;Zheng, Zhou-Lian;Yang, Zhi-Xin
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.693-698
    • /
    • 2019
  • In this study, the problem of axisymmetric deformation of prestressed $F{\ddot{o}}ppl-Hencky$ membrane under constrained deflecting was analytically solved and its closed-form solution was presented. The small-rotation-angle assumption usually adopted in membrane problems was given up, and the initial stress in membrane was taken into account. Consequently, this closed-form solution has higher calculation accuracy and can be applied for a wider range in comparison with the existing approximate solution. The presented numerical examples demonstrate the validity of the closed-form solution, and show the errors of the contact radius, profile and radial stress of membrane in the existing approximate solution brought by the small-rotation-angle assumption. Moreover, the influence of the initial stress on the contact radius is also discussed based on the numerical examples.

LOCAL APPROXIMATE SOLUTIONS OF A CLASS OF NONLINEAR DIFFUSION POPULATION MODELS

  • Yang, Guangchong;Chen, Xia;Xiao, Lan
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권1호
    • /
    • pp.83-92
    • /
    • 2021
  • This paper studies approximate solutions for a class of nonlinear diffusion population models. Our methods are to use the fundamental solution of heat equations to construct integral forms of the models and the well-known Banach compression map theorem to prove the existence of positive solutions of integral equations. Non-steady-state local approximate solutions for suitable harvest functions are obtained by utilizing the approximation theorem of multivariate continuous functions.