• Title/Summary/Keyword: Approximate inference

Search Result 63, Processing Time 0.019 seconds

An Index of Applicability for the Decomposition of Multivariable Fuzzy Control Rules (제어규칙 분해법에 의한 다변수 퍼지 시스템 제어의 적용기준지수)

  • 이평기;이균경;전기준
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.79-86
    • /
    • 1992
  • Recent research on the application of fuzzy set theory to the design of control systems has led to interest in the theory of decomposition of multivariable fuzzy systems. Decomposition of multivariable control rules is preperable since it alleviates the complexity of the problem. However inference error is inevitable because of its approximate nature. In this paper we define an index of applicability which can classify whether the Gupta et. al's method can be applied to multivariable fuzzy system or not. We also propose a modified version of the decomposition which can reduce inference error and improve performance of the system.

  • PDF

Fuzzy Control of DC Servo System and Implemented Logic Circuits of Fuzzy Inference Engine Using Decomposition of $\alpha$-level Fuzzy Set (직류 서보계의 퍼지제어와 $\alpha$-레벨 퍼지집합 분해에 의한 퍼지추론 연산회로 구현)

  • 홍정표;홍순일;이요섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.793-800
    • /
    • 2004
  • The purpose of this study is to develope a servo system with faster and more accurate response. This paper describes a method of approximate reasoning for fuzzy control of servo system based on the decomposition of $\alpha$-level fuzzy sets. We propose that fuzzy logic algorithm is a body from fuzzy inference to defuzzificaion cases where the output variable u directly is generated PWM The effectiveness for robust and faster response of the fuzzy control scheme are verified for a variable parameter by comparison with a PID control and fuzzy control A position control of DC servo system with a fuzzy logic controller is demonstrated successfully.

Likelihood based inference for the shape parameter of Pareto Distribution

  • Lee, Jae-Un;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1173-1181
    • /
    • 2008
  • In this paper, when the parameter of interest is the shape parameter in Pareto distribution, we develop likelihood based inference for this parameter. Specially, we develop signed log-likelihood ratio statistic and the modified signed log-likelihood ratio statistic for the shape parameter. It is well-known that as sample size grows, the modified signed log-likelihood ratio statistic converges to standard normal distribution faster than the signed log-likelihood ratio statistic. But the computation of the modified signed log-likelihood statistic is hard or even impossible when the sufficient statistics and the ancillary statistics are not clear. In this case, one can consider an approximation to the modified signed log-likelihood statistic. Specially, when the parameter of interest is informationally orthogonal to the nuisance parameters, we propose the approximate modified signed log-likelihood statistic. Through simulation, we investigate the performances of the proposed statistics with the signed log-likelihood statistic.

  • PDF

Implement of Fuzzy Inference Hardware for Servo Control Using $\alpha$ -level Set Decomposition ($\alpha$-레벨집합 분해에 의한 서보제어용 퍼지추론 하드웨어의 구현)

  • Hong Soon-ill;Lee Yo-seob;Choi Jae-yong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.662-665
    • /
    • 2001
  • As the fuzzy control is applied to servo system the hardware implementation of the fuzzy information systems requires the high speed operations, short real time control and the small size systems. The aims of this study is to develop hardware of the fuzzy information systems to be apply to servo system. In this paper, we propose a calculation method of approximate reasoning for fuzzy control based on $\alpha$-level set decomposition of fuzzy sets by quantize $\alpha$-cuts. This method can be easily implemented with analog hardware. The influence of quantization levels of $\alpha$-cuts on output from fuzzy inference engine is investigated. It is concluded that 4 quantization levels give sufficient result for fuzzy control performance of do servo system. It examined useful with experiment for dc servo system.

  • PDF

Investigations on data-driven stochastic optimal control and approximate-inference-based reinforcement learning methods (데이터 기반 확률론적 최적제어와 근사적 추론 기반 강화 학습 방법론에 관한 고찰)

  • Park, Jooyoung;Ji, Seunghyun;Sung, Keehoon;Heo, Seongman;Park, Kyungwook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.319-326
    • /
    • 2015
  • Recently in the fields o f stochastic optimal control ( SOC) and reinforcemnet l earning (RL), there have been a great deal of research efforts for the problem of finding data-based sub-optimal control policies. The conventional theory for finding optimal controllers via the value-function-based dynamic programming was established for solving the stochastic optimal control problems with solid theoretical background. However, they can be successfully applied only to extremely simple cases. Hence, the data-based modern approach, which tries to find sub-optimal solutions utilizing relevant data such as the state-transition and reward signals instead of rigorous mathematical analyses, is particularly attractive to practical applications. In this paper, we consider a couple of methods combining the modern SOC strategies and approximate inference together with machine-learning-based data treatment methods. Also, we apply the resultant methods to a variety of application domains including financial engineering, and observe their performance.

VS3-NET: Neural variational inference model for machine-reading comprehension

  • Park, Cheoneum;Lee, Changki;Song, Heejun
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.771-781
    • /
    • 2019
  • We propose the VS3-NET model to solve the task of question answering questions with machine-reading comprehension that searches for an appropriate answer in a given context. VS3-NET is a model that trains latent variables for each question using variational inferences based on a model of a simple recurrent unit-based sentences and self-matching networks. The types of questions vary, and the answers depend on the type of question. To perform efficient inference and learning, we introduce neural question-type models to approximate the prior and posterior distributions of the latent variables, and we use these approximated distributions to optimize a reparameterized variational lower bound. The context given in machine-reading comprehension usually comprises several sentences, leading to performance degradation caused by context length. Therefore, we model a hierarchical structure using sentence encoding, in which as the context becomes longer, the performance degrades. Experimental results show that the proposed VS3-NET model has an exact-match score of 76.8% and an F1 score of 84.5% on the SQuAD test set.

A Probabilistic Tensor Factorization approach for Missing Data Inference in Mobile Crowd-Sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.63-72
    • /
    • 2021
  • Mobile crowd-sensing (MCS) is a promising sensing paradigm that leverages mobile users with smart devices to perform large-scale sensing tasks in order to provide services to specific applications in various domains. However, MCS sensing tasks may not always be successfully completed or timely completed for various reasons, such as accidentally leaving the tasks incomplete by the users, asynchronous transmission, or connection errors. This results in missing sensing data at specific locations and times, which can degrade the performance of the applications and lead to serious casualties. Therefore, in this paper, we propose a missing data inference approach, called missing data approximation with probabilistic tensor factorization (MDI-PTF), to approximate the missing values as closely as possible to the actual values while taking asynchronous data transmission time and different sensing locations of the mobile users into account. The proposed method first normalizes the data to limit the range of the possible values. Next, a probabilistic model of tensor factorization is formulated, and finally, the data are approximated using the gradient descent method. The performance of the proposed algorithm is verified by conducting simulations under various situations using different datasets.

Inference of the Exponential Distribution Based on Multiply Type-II Censored Samples

  • Kang, Suk-Bok;Lee, Sang-Ki
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.279-293
    • /
    • 2006
  • In this paper, we derive the approximate maximum likelihood estimators of the scale parameter and location parameter of the exponential distribution based on multiply Type-II censored samples. Then three type tests, including the modified Clamor-von Mises test, the modified Watson test and the modified Kolmogorov-Smirnov test are developed for the exponential distribution based on multiply Type-II censored samples by using the proposed estimators. For each test, Monte Carlo techniques are used to generate critical values. The powers of these tests are investigated under several alternative distributions.

  • PDF

Analysis of Nested Case-Control Study Designs: Revisiting the Inverse Probability Weighting Method

  • Kim, Ryung S.
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.455-466
    • /
    • 2013
  • In nested case-control studies, the most common way to make inference under a proportional hazards model is the conditional logistic approach of Thomas (1977). Inclusion probability methods are more efficient than the conditional logistic approach of Thomas; however, the epidemiology research community has not accepted the methods as a replacement of the Thomas' method. This paper promotes the inverse probability weighting method originally proposed by Samuelsen (1997) in combination with an approximate jackknife standard error that can be easily computed using existing software. Simulation studies demonstrate that this approach yields valid type 1 errors and greater powers than the conditional logistic approach in nested case-control designs across various sample sizes and magnitudes of the hazard ratios. A generalization of the method is also made to incorporate additional matching and the stratified Cox model. The proposed method is illustrated with data from a cohort of children with Wilm's tumor to study the association between histological signatures and relapses.

Estimation of the exponential distribution based on multiply Type I hybrid censored sample

  • Lee, Kyeongjun;Sun, Hokeun;Cho, Youngseuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.633-641
    • /
    • 2014
  • The exponential distibution is one of the most popular distributions in analyzing the lifetime data. In this paper, we propose multiply Type I hybrid censoring. And this paper presents the statistical inference on the scale parameter for the exponential distribution when samples are multiply Type I hybrid censoring. The scale parameter is estimated by approximate maximum likelihood estimation methods using two different Taylor series expansion types ($AMLE_I$, $AMLE_{II}$). We also obtain the maximum likelihood estimator (MLE) of the scale parameter ${\sigma}$ under the proposed multiply Type I hybrid censored samples. We compare the estimators in the sense of the root mean square error (RMSE). The simulation procedure is repeated 10,000 times for the sample size n=20 and 40 and various censored schemes. The $AMLE_{II}$ is better than $AMLE_I$ in the sense of the RMSE.