References
- Asgharzadeh, A. (2009). Approximate MLE for the scaled generalized exponential distribution under progressive Type II censoring. Journal of the Korean Statistical Society, 38, 223-229. https://doi.org/10.1016/j.jkss.2008.09.004
- Balakrishnan, N. and Cohen, A. C. (1991). Order statistics and inference: Estimation methods, Academic Press, Boston.
- Balakrishnan, N. and Sandu, R. A. (1996). Best linear unbiased and maximum mlikelihood estimation for exponential distributions under general progressive Type II censored sample. Sanky A: The Indian Journal of Statistics, 58, 1-9.
- Cho, Y. S., Lee, C. S. and Shin, H. J. (2013). Estimation for the generalized exponential distribution under progressive type I interval censoring. Journal of the Korean Data & Information Science Society, 24, 1309-1317. https://doi.org/10.7465/jkdi.2013.24.6.1309
- Epstein, B. (1954). Truncated life tests in the exponential case. Annals of Mathematical Statistics, 25, 555-564. https://doi.org/10.1214/aoms/1177728723
- Kang, J. H. and Lee, C. S. (2013). Estimations of the skew parameter in a skewed double power function distribution. Journal of the Korean Data & Information Science Society, 24, 901-909. https://doi.org/10.7465/jkdi.2013.24.4.901
- Kang, S. B. (2003). Approximate MLEs for exponential distribution under multiply Type II censoring. Journal of the Korean Data & Information Science Society, 14, 983-988.
- Kang, S. B. and Cho, Y. S. (1998). MRE for exponential distirubion under general progressive Type II censored samples. Journal of the Korean Data & Information Science Society, 9, 71-76.
- Kang, S. B. and Park, S. M. (2005). Estimation for the exponentiated exponential distribution based on multiply Type II censored samples. The Korean Communications in Statistics, 12, 643-652. https://doi.org/10.5351/CKSS.2005.12.3.643
- Lee, J. C. and Lee, C. S. (2012). An approximate maximum likelihood estimator in a weighted exponential distribution. Journal of the Korean Data & Information Science Society, 23, 219-225. https://doi.org/10.7465/jkdi.2012.23.1.219
- Lee, K. J., Park, C. K. and Cho, Y. S. (2012). Estimation of the exponential distribution based on multiply progressive Type II censored sample. The Korean Communications in Statistics, 19, 697-704. https://doi.org/10.5351/CKSS.2012.19.5.697
- Nelson, W. (1982). Applied life data analysis, John Wiley & Sons, New York.
- Shin, H. J., Lee, K. H. and Cho, Y. S. (2010). Parameter estimation for exponential distribution under progressive Type I interval censoring. Journal of the Korean Data & Information Science Society, 21, 927-934.
- Singh, U. and Kumar, A. (2007). Bayesian estimation of the exponential parameter under a multiply Type II censoring scheme. Austrian Journal of Statistics, 36, 227-238.
Cited by
- Estimation of the half-logistic distribution based on multiply Type I hybrid censored sample vol.25, pp.6, 2014, https://doi.org/10.7465/jkdi.2014.25.6.1581
- Bayes estimation of entropy of exponential distribution based on multiply Type II censored competing risks data vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1573
- Estimation of entropy of the inverse weibull distribution under generalized progressive hybrid censored data vol.28, pp.3, 2014, https://doi.org/10.7465/jkdi.2017.28.3.659
- Estimation of the exponentiated half-logistic distribution based on multiply Type-I hybrid censoring vol.27, pp.1, 2014, https://doi.org/10.29220/csam.2020.27.1.047