• Title/Summary/Keyword: Approaches to Learning

Search Result 1,006, Processing Time 0.03 seconds

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

Development and Implementation of a Learning Community in the Curriculum for Undergraduate Medical Students (연세대학교 의과대학 학습공동체 교육과정 개발 및 운영 분석)

  • Kim, Hae Won;An, Shinki
    • Korean Medical Education Review
    • /
    • v.23 no.3
    • /
    • pp.194-203
    • /
    • 2021
  • Learning communities in medical education have demonstrated favorable outcomes in terms of students' learning, professional development, and wellness. Despite these strengths and the widespread adoption of learning communities in US medical schools, there has been little interest in medical learning communities in Korea. In this context, the present study examined the development and implementation of the Yonsei Medical Learning Community (YMLC) and analyzed its outcomes and areas of improvement. The Yonsei University College of Medicine has operated a learning community as part of the undergraduate medical education curriculum since 2014. The YMLC is the first program of its type in Korea. The overall structure of the YMLC consists of four distinct communities (pillars), which are named after four distinguished alumni, and each pillar is organized into five learning community classes. Each class is vertically integrated across students in different medical school years, and one faculty advisor is matched to about 30 students. As the YMLC focuses on fostering reflective practice in students and providing them with opportunities to build teamwork and experience social relatedness, two educational approaches have been adopted: reflective writing and mentoring and community activities. In this study, we obtained and analyzed second-year students' feedback on the YMLC curriculum and identified its achievements, merits, and areas that need improvement. The results have shown that over 75% and 60% of respondents reported satisfaction with reflective writing and mentoring and community activities, respectively. The educational activities of the learning community helped students regularly reflect on their learning and progress and establish close relationships with faculty advisors. However, several areas of improvement regarding content, format, and logistical issues were also identified. The present findings may provide valuable information for other institutions to develop learning communities relevant to their own context.

Class-Labeling Method for Designing a Deep Neural Network of Capsule Endoscopic Images Using a Lesion-Focused Knowledge Model

  • Park, Ye-Seul;Lee, Jung-Won
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.171-183
    • /
    • 2020
  • Capsule endoscopy is one of the increasingly demanded diagnostic methods among patients in recent years because of its ability to observe small intestine difficulties. It is often conducted for 12 to 14 hours, but significant frames constitute only 10% of whole frames. Thus, it has been designed to automatically acquire significant frames through deep learning. For example, studies to track the position of the capsule (stomach, small intestine, etc.) or to extract lesion-related information (polyps, etc.) have been conducted. However, although grouping or labeling the training images according to similar features can improve the performance of a learning model, various attributes (such as degree of wrinkles, presence of valves, etc.) are not considered in conventional approaches. Therefore, we propose a class-labeling method that can be used to design a learning model by constructing a knowledge model focused on main lesions defined in standard terminologies for capsule endoscopy (minimal standard terminology, capsule endoscopy structured terminology). This method enables the designing of a systematic learning model by labeling detailed classes through differentiation of similar characteristics.

Hyperspectral Image Classification using EfficientNet-B4 with Search and Rescue Operation Algorithm

  • S.Srinivasan;K.Rajakumar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.213-219
    • /
    • 2023
  • In recent years, popularity of deep learning (DL) is increased due to its ability to extract features from Hyperspectral images. A lack of discrimination power in the features produced by traditional machine learning algorithms has resulted in poor classification results. It's also a study topic to find out how to get excellent classification results with limited samples without getting overfitting issues in hyperspectral images (HSIs). These issues can be addressed by utilising a new learning network structure developed in this study.EfficientNet-B4-Based Convolutional network (EN-B4), which is why it is critical to maintain a constant ratio between the dimensions of network resolution, width, and depth in order to achieve a balance. The weight of the proposed model is optimized by Search and Rescue Operations (SRO), which is inspired by the explorations carried out by humans during search and rescue processes. Tests were conducted on two datasets to verify the efficacy of EN-B4, with Indian Pines (IP) and the University of Pavia (UP) dataset. Experiments show that EN-B4 outperforms other state-of-the-art approaches in terms of classification accuracy.

Deep LS-SVM for regression

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.827-833
    • /
    • 2016
  • In this paper, we propose a deep least squares support vector machine (LS-SVM) for regression problems, which consists of the input layer and the hidden layer. In the hidden layer, LS-SVMs are trained with the original input variables and the perturbed responses. For the final output, the main LS-SVM is trained with the outputs from LS-SVMs of the hidden layer as input variables and the original responses. In contrast to the multilayer neural network (MNN), LS-SVMs in the deep LS-SVM are trained to minimize the penalized objective function. Thus, the learning dynamics of the deep LS-SVM are entirely different from MNN in which all weights and biases are trained to minimize one final error function. When compared to MNN approaches, the deep LS-SVM does not make use of any combination weights, but trains all LS-SVMs in the architecture. Experimental results from real datasets illustrate that the deep LS-SVM significantly outperforms state of the art machine learning methods on regression problems.

On learning control of robot manipulator including the bounded input torque (제한 입력을 고려한 로보트 매니플레이터의 학습제어에 관한 연구)

  • 성호진;조현찬;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.58-62
    • /
    • 1988
  • Recently many adaptive control schemes for the industrial robot manipulator have been developed. Especially, learning control utilizing the repetitive motion of robot and based on iterative signal synthesis attracts much interests. However, since most of these approaches excludes the boundness of the input torque supplied to the manipulator, its effectiveness may be limited and also the full dynamic capacity of the robot manipulator can not be utilized. To overcome the above-mentioned difficulties and meet the desired performance, we propose an approach which yields the effective learning control schemes in this paper. In this study, some stability conditions derived from applying the Lyapunov theory to the discrete linear time-varying dynamic system are established and also an optimization scheme considering the bounded input torque is introduced. These results are simulated on a digital computer using a three-joint revolute manipulator to show their effectiveness.

  • PDF

Content-Based Image Retrieval Based on Relevance Feedback and Reinforcement Learning for Medical Images

  • Lakdashti, Abolfazl;Ajorloo, Hossein
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.240-250
    • /
    • 2011
  • To enable a relevance feedback paradigm to evolve itself by users' feedback, a reinforcement learning method is proposed. The feature space of the medical images is partitioned into positive and negative hypercubes by the system. Each hypercube constitutes an individual in a genetic algorithm infrastructure. The rules take recombination and mutation operators to make new rules for better exploring the feature space. The effectiveness of the rules is checked by a scoring method by which the ineffective rules will be omitted gradually and the effective ones survive. Our experiments on a set of 10,004 images from the IRMA database show that the proposed approach can better describe the semantic content of images for image retrieval with respect to other existing approaches in the literature.

A Contrastive Learning Framework for Weakly Supervised Video Anomaly Detection

  • Hyeon Jeong Park;Je Hyeong Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.171-174
    • /
    • 2022
  • Weakly-supervised learning is a widely adopted approach in video anomaly detection whereby only video labels are utilized instead of expensive frame-level annotations. Since the success of multi-instance learning (MIL), almost all recent approaches are based on maximizing the margin between the set of abnormal video snippets and those of normal video snippets. In this work, we present a simple contrastive approach for weakly supervised video anomaly detection (WS-VAD) with aims to enhance the performance of existing models. The method is generic in nature and introduces a loss function to encourage attraction of output features from the same video class and repel those from different video classes. Experimental results demonstrate our method can be applied to existing algorithms to improve detection accuracy in public video anomaly dataset.

  • PDF

Automatic Object Extraction from Electronic Documents Using Deep Neural Network (심층 신경망을 활용한 전자문서 내 객체의 자동 추출 방법 연구)

  • Jang, Heejin;Chae, Yeonghun;Lee, Sangwon;Jo, Jinyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.411-418
    • /
    • 2018
  • With the proliferation of artificial intelligence technology, it is becoming important to obtain, store, and utilize scientific data in research and science sectors. A number of methods for extracting meaningful objects such as graphs and tables from research articles have been proposed to eventually obtain scientific data. Existing extraction methods using heuristic approaches are hardly applicable to electronic documents having heterogeneous manuscript formats because they are designed to work properly for some targeted manuscripts. This paper proposes a prototype of an object extraction system which exploits a recent deep-learning technology so as to overcome the inflexibility of the heuristic approaches. We implemented our trained model, based on the Faster R-CNN algorithm, using the Google TensorFlow Object Detection API and also composed an annotated data set from 100 research articles for training and evaluation. Finally, a performance evaluation shows that the proposed system outperforms a comparator adopting heuristic approaches by 5.2%.

A Deep Learning Method for Brain Tumor Classification Based on Image Gradient

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1233-1241
    • /
    • 2022
  • Tumors of the brain are the deadliest, with a life expectancy of only a few years for those with the most advanced forms. Diagnosing a brain tumor is critical to developing a treatment plan to help patients with the disease live longer. A misdiagnosis of brain tumors will lead to incorrect medical treatment, decreasing a patient's chance of survival. Radiologists classify brain tumors via biopsy, which takes a long time. As a result, the doctor will need an automatic classification system to identify brain tumors. Image classification is one application of the deep learning method in computer vision. One of the deep learning's most powerful algorithms is the convolutional neural network (CNN). This paper will introduce a novel deep learning structure and image gradient to classify brain tumors. Meningioma, glioma, and pituitary tumors are the three most popular forms of brain cancer represented in the Figshare dataset, which contains 3,064 T1-weighted brain images from 233 patients. According to the numerical results, our method is more accurate than other approaches.