• Title/Summary/Keyword: Application Conditions

Search Result 5,982, Processing Time 0.038 seconds

A Study on the Spectatorship through Character of (<심슨가족>의 캐릭터를 통한 관객성 연구)

  • Youm, Dong-Cheol
    • Cartoon and Animation Studies
    • /
    • s.21
    • /
    • pp.1-17
    • /
    • 2010
  • As animation emerged as a high value-added content business, more studies are conducted focusing on the fact that the key to the success of animation is not a story but a character. This study aims to examine the characters of , the globally loved animation, and figure out its interactive way of attracting viewers based on Spectatorship Theory, so that it can help set the nation's TV animation series to be made on the right track. To achieve this goal, it will explore various aspects including the concept of animation character, the relations between ideology and character, and the changes in design according to a social phenomenon, then based on Spectatorship Theory will analyze and suggest how the characters of fulfill the required conditions to attract viewers. In addition, it will examine the wide application of the characters of . In conclusion, unlike theatrical animation, TV animation has a characteristic that it can easily and repeatedly deliver messages to viewers over a long time, however, domestic TV animation turned out to fail to utilize the advantage. In other words, while its character has distinct individuality, it is not supported by creative and solid story line, and the character is not attractive as much as the characters of which successfully evoke sympathy from viewers. In animation, arousing sympathy from its viewers or audiences is very important, so a character that well reflects social discourse is an integral part of it. Therefore, in-depth and specialized study on animation's character is highly required for the sustainable success and growth of domestic animation.

  • PDF

Electrostatic Immobilization of D-Xylose Isomerase to a Cation Exchanger for the Conversion of D-Xylose to D-Xylulose (D-xylose에서 D-xylulose로의 전환을 위한 D-xylose Isomerase의 정전기적 고정화)

  • Hang, Nguyen Thi;Kim, Sung-Gun;Kweon, Dae-Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2012
  • Since D-xylose is not fermentable in Saccharomyces cerevisiae, its conversion to D-xylulose is required for its application in biotechnological industries using S. cerevisiae. In order to convert D-xylose to D-xylulose by way of an enzyme immobilized system, D-xylose isomerase (XI) of Escherichia coli was fused with 10-arginine tag (R10) at its C-terminus for the simple purification and immobilization process using a cation exchanger. The fusion protein XIR10 was overexpressed in recombinant E. coli and purified to a high purity by a single step of cation exchange chromatography. The purified XIR10 was immobilized to a cation exchanger via the electrostatic interaction with the C-terminal 10-arginine tag. Both the free and immobilized XIR10 exhibited similar XI activities at various pH values and temperatures, indicating that the immobilization to the cation exchanger has a small effect on the enzymatic function of XIR10. Under optimized conditions for the immobilized XIR10, D-xylose was isomerized to D-xylulose with a conversion yield of 25%. Therefore, the results of this study clearly demonstrate that the electrostatic immobilization of XIR10 via the interaction between the 10-arginine tag and a cation exchanger is an applicable form of the conversion of D-xylose to D-xylulose.

Feasibility of Microwave for the Solubilization of Cattle Manure and the Effect of Chemical Catalysts Addition (우분의 가용화에 대한 마이크로웨이브의 적용성 및 화학적 촉매의 첨가에 따른 효과)

  • Kim, Hyanggi;Kang, Kyeong Hwan;Lee, Jaeho;Park, Taejoo;Byun, Imgyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.186-193
    • /
    • 2017
  • Microwave (MW) is an effective method for solubilizing organic solids because it has thermal, non-thermal and ionic conduction effects by dielectric heating and high energy efficiency. In this study, we evaluated the application of MW to the solubilization of cattle manure and investigated the solubilization ratio of cattle manure by solid concentration, MW power and target temperature. And $H_2SO_4$ and NaCl were added to investigated the effects on the MW-assisted solubilization. Also, we evaluated the solubilization efficiency by biochemical methane potential(BMP) test according to the solubilization conditions. Maximum SCOD increment per energy supply was 70.5 mg $SCOD_{increased}/kJ$ at 12% of the solid concentration, MW power of 800 W and the target temperature of $40^{\circ}C$. And SCOD concentration went up 153.2% compared to the initial concentration. In the MW-assisted solubilization with $H_2SO_4$ and NaCl as chemical catalysts, SCOD concentration was increased by 36% and 22.7%, respectively, compared to the result of MW. The methane production was increased by 13.3% and 11.3% with the addition of $H_2SO_4$ and NaCl. Therefore, MW is an effective method for solubilization of cattle manure, and it is necessary to use chemical catalysts to increase the solubilzation efficiency.

Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System (10MW급 부유식 파력-풍력 복합발전 시스템 플랫폼 초기설계를 위한 위상최적화 응용)

  • Song, Chang Yong;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.194-202
    • /
    • 2016
  • This study aims to review a topology optimization based on finite element analysis (FEA) for conceptual design of platform in the 10MW class floating type wave-wind hybrid power generation system (WHPGS). Two topology optimization theories, density method (DM) and homogenization design method (HDM) were used to check which one is more effective for a simplified structural design problem prior to the topology optimization of platform of WHPGS. From the results of the simplified design problem, the HDM was applied to the topology optimization of platform of WHPGS. For the conceptual platform design of WHPGS, FEA model was created and then the structural analysis was performed considering offshore environmental loads at installation site. Hydrodynamics analysis was carried out to calculate pressure on platform and tension forces in mooring lines induced from the offshore environmental loads such as design wave and current. Loading conditions for the structural analysis included the analysis results from the hydrodynamic analysis and the weights of WHPGS. Boundary condition was realized using inertia relief method. The topology optimization of WHPGS platform was performed using the HDM, and then the conceptual arrangement of main structural members was suggested. From the results, it was confirmed that the topology optimization might be a useful tool to design the conceptual arrangement of main structural members for a newly developed offshore structure such as the floating type WHPGS.

Past and Future Regional Climate Change in Korea

  • Kwon, Won-Tae;Park, Youngeun;Min, Seung-Ki;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.161-161
    • /
    • 2003
  • During the last century, most scientific questions related to climate change were focused on the evidence of anthropogenic global warming (IPCC, 2001). There are robust evidences of warming and also human-induced climate change. We now understand the global, mean change a little bit better; however, the uncertainties for regional climate change still remains large. The purpose of this study is to understand the past climate change over Korea based on the observational data and to project future regional climate change over East Asia using ECHAM4/HOPE model and MM5 for downscaling. There are significant evidences on regional climate change in Korea, from several variables. The mean annual temperature over Korea has increased about 1.5∼$1.7^{\circ}C$ during the 20th century, including urbanization effect in large cities which can account for 20-30% of warming in the second half of the 20th century. Cold extreme temperature events occurred less frequently especially in the late 20th century, while hot extreme temperature events were more common than earlier in the century. The seasonal and annual precipitation was analyzed to examine long-term trend on precipitation intensity and extreme events. The number of rainy days shows a significant negative trend, which is more evident in summer and fall. Annual precipitation amount tends to increase slightly during the same period. This suggests an increase of precipitation intensity in this area. These changes may influence on growing seasons, floods and droughts, diseases and insects, marketing of seasonal products, energy consumption, and socio-economic sectors. The Korean Peninsular is located at the eastern coast of the largest continent on the earth withmeso-scale mountainous complex topography and itspopulation density is very high. And most people want to hear what will happen in their back yards. It is necessary to produce climate change scenario to fit forhigh-resolution (in meteorological sense, but low-resolution in socio-economic sense) impact assessment. We produced one hundred-year, high-resolution (∼27 km), regional climate change scenario with MM5 and recognized some obstacles to be used in application. The boundary conditions were provided from the 240-year simulation using the ECHAM4/HOPE-G model with SRES A2 scenario. Both observation and simulation data will compose past and future regional climate change scenario over Korea.

  • PDF

Application of Heat Balance Model Design of Ventilating and Cooling Greenhouse (온실의 환기 및 냉방 설계를 위한 열평형 모델의 작용)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.201-206
    • /
    • 2000
  • A certain system to overcome high temperature should be introduced for the stable year-round cultivation in greenhouses. There are efficient methods to overcome high temperature such as ventilation system with shading screen, fan and pad system with screen, and fog system with screen. This study was carried out to find a means to determine the capacity of such system. Heat balance equations for each system were established and verified by experimental results. The calculated ventilation rates from heat balance equations showed a good agreement with the measured ones. The evapotranspiration coefficient was the most important parameter affecting the ventilation requirement among input parameter affecting the ventilation requirement among input parameters except weather data. When the evaportanspiration coefficient increased 1%, the ventilation requirement decreased 1.3%. Therefore the data of evapotranspiration coefficient should be accumulated by various experiments, and then design standards and selection guidelines should be provided. The simulation results for same design conditions shown that air exchanges requirement and evaporating water of fan and pad system were 5.1∼7.7% and 6.8∼9.3% larger than those of fog system, respectively.

  • PDF

A Drift Control Performance of An Agricultural Unmanned Helicopter While Hovering (농용 무인 헬리콥터의 정지 비행시 편류제어 성능의 평가)

  • Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • The precision aerial application of small farms, such as paddy, upland and orchard fields using agricultural unmanned helicopters became a new paradigm. The objective of this study was to evaluate the performance of a GPS module and algorithm, controlling drift of agricultural helicopter by the crosswind and maintaining the position for emergency landing. Purpose of the drift control, of which an algorithm works while hovering is related with the emergency sequence that coping with abnormal conditions of rotorcraft system. However, the inertial attitude control cannot detect a drifting motion of fuselage moving at the constant velocity, thus the crosswind takes the helicopter away from the landing position. Performance of the drift control module, based on the GPS that a hovering position did not deviate within 5m in diameter, were tested and evaluated. Initially, the reaction against a disturbing gust wind was sensitive, soon the helicopter maintained its locking position and azimuth within 5m in diameter. It was, however, difficult for the helicopter to recognize the swaying and nodding, the some deviation was expected due to the discrepancy characteristics of the GPS signal. The performance of the drift control proved the effectiveness of the module to maintain the position against an unintended drift during the emergency landing or hovering.

  • PDF

A Study on the Korea Smart City Certification Index and Demonstration Authentication (국내 스마트시티 인증 지표 및 시범 인증에 관한 연구)

  • Han, Sun-Hee;Shin, Young-Seob;Yu, In-Jae;Lee, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.688-698
    • /
    • 2018
  • The government has recognized the importance of smart city indicators and prepared the legal grounds for the certification of smart cities in the recently revised "Act on Smart City Development and Industrial Promotion." This study derived smart city indicators adequate for the domestic conditions and compatible with the overseas trends by examining and complementing the indicators through an AHP analysis based on consultations and interviews (surveys) with experts and local government officials, who are actually carrying out related projects. In addition, the adequacy and reliability of the indicators were confirmed by verifying and certifying the Korean local governments' smart city plans through demand surveys on a trial basis. This study is meaningful in that it systematically studies the smart city indicators that have gained in importance and reviews their application. The findings of this study can be used as a basis for implementing a smart cities certification system in the future. Recently, the Special Committee on Smart Cities was established under the Committee for the Fourth Industrial Revolution. This committee is composed of civilian members and is working with the Ministry of Land, Infrastructure, and Transport, the Ministry of Science and ICT, etc., to promote the creation of smart cities. It is expected that smart city indicators that include the levels of both domestic and overseas smart cities will boost the active spread of such cities in Korea.

Design and Manufacturing Technology of Heat Exchanger in Air Compressor for Railroad Vehicle by 3D Printing Process (3D 프린팅 적용 철도차량용 공기압축기의 열교환기 설계 및 제작 기술 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.802-809
    • /
    • 2017
  • 3D printing technology is a manufacturing process for products, in which polymer and metal materials are laminated to form structures. It is advantageous for manufacturing parts requiring a high degree of design freedom and functionality. In addition, it would be a suitable technology for the production of parts for railway vehicles in the future, due to the need to produce parts in small quantities. In order to fully exploit the advantages of 3D printing technology, it is necessary to consider the process characteristics during the design of the product. In this study, the redesign and manufacturing technology of the product considering the performance and process conditions were studied for the heat exchanger in the air compressor of railway vehicles, as a trial application of the 3D printing technique. First of all, the design concept to improve the performance of the heat exchanger was defined, and the design range was specified to satisfy the performance of the present heat exchanger analyzed experimentally. Then, the detailed design was revised considering the characteristics of the metal 3D printing process, such as the manufacturing restrictions and production time. Based on the final design, the product was fabricated by the 3D printing process using aluminum material, and it was confirmed that the dimensional accuracy was satisfied. The weight of the final product was reduced by 41% compared with the existing products. The results of this study will make it possible to develop an efficient product design process for 3D printing technology.

A Study on the Heat Flow Analysis of Infra-Red Signature Suppression System for Naval Ship (함정 적외선 신호저감 장치의 열 유동해석 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.740-746
    • /
    • 2017
  • Infrared signatures emitted from hot exhaust gases generated by the internal combustion engine and generator of naval ships and from the metal surfaces of the funnel have become the targets of infrared homing missiles, which is the main cause of a reduced survivability of naval ships. The infrared signatures from the exhaust gas and the metal surface of a funnel can be reduced by installing an infrared signature suppression (IRSS) system on a ship. The IRSS system consists of three parts: an eductor that generates turbulent flow of the exhaust gas, a mixing tube that mixes the exhaust gas with ambient air, and a diffuser that forms an air film using the pressure difference between the inside and outside air. As a basic study to develop an IRSS system using domestic technology, this study analyzed the model test conditions of an IRSS system developed by an overseas engineering company and installed on a domestic naval ship, and a numerical heat-flow analysis was conducted based on the results of the aforementioned analysis. Numerical heat-flow analysis was performed using a commercial numerical-analysis application, and various turbulence models were considered. As a result, the temperature and velocity of the exhaust gas at the educator inlet and diffuser outlet and that of the metal surface of the diffuser were measured, and found to agree well with the measurement results of the model test.