• Title/Summary/Keyword: Apparent Activation Energy

Search Result 217, Processing Time 0.026 seconds

Estimation of Compressive Strength of Concrete Incorporating Fine Particle Cement Considering Blaine Fineness (분말도 변화를 고려한 미분시멘트 사용 콘크리트의 압축강도증진 해석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.139-145
    • /
    • 2009
  • This study presents an estimation of the strength development of concrete considering the equivalent age using fine particle cement (FC), which is manufactured according to the classification process. Contents and W/B were considered as experimental parameters. The strength considering the equivalent age is gradually increased, and the deviation of the strength according to W/C is increased with decrease of W/C in accordance with the replacement of the fine particle cement. For estimating the apparent activation energy (Ea) considering setting time and blame fineness of cement, Ea of the FC based on setting time is calculated with $27.6{\sim}28.9$ KJ/mol, which is somewhat similar to that of OPC, while by applying Ea based on blame fineness, Ea is increased with increase of FC contents, and is calculated with $40{\sim}56$ KJ/mol. Good agreement is obtained by applying Ea based on setting time, while there was remarkable variation between calculated value and measured value when Ea based on blame fineness. Therefore, it is necessary to add influencing factors in existing Ea to enhance the accuracy of the estimation.

Characterization of Glycerol Dehydrogenase from Thermoanaerobacterium thermosaccharolyticum DSM 571 and GGG Motif Identification

  • Wang, Liangliang;Wang, Jiajun;Shi, Hao;Gu, Huaxiang;Zhang, Yu;Li, Xun;Wang, Fei
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1077-1086
    • /
    • 2016
  • Glycerol dehydrogenases (GlyDHs) are essential for glycerol metabolism in vivo, catalyzing its reversible reduction to 1,3-dihydroxypropranone (DHA). The gldA gene encoding a putative GlyDH was cloned from Thermoanaerobacterium thermosaccharolyticum DSM 571 (TtGlyDH) and expressed in Escherichia coli. The presence of Mn2+ enhanced its enzymatic activity by 79.5%. Three highly conserved residues (Asp171, His254, and His271) in TtGlyDH were associated with metal ion binding. Based on an investigation of glycerol oxidation and DHA reduction, TtGlyDH showed maximum activity towards glycerol at 60℃ and pH 8.0 and towards DHA at 60℃ and pH 6.0. DHA reduction was the dominant reaction, with a lower Km(DHA) of 1.08 ± 0.13 mM and Vmax of 0.0053 ± 0.0001 mM/s, compared with glycerol oxidation, with a Km(glycerol) of 30.29 ± 3.42 mM and Vmax of 0.042 ± 0.002 mM/s. TtGlyDH had an apparent activation energy of 312.94 kJ/mol. The recombinant TtGlyDH was thermostable, maintaining 65% of its activity after a 2-h incubation at 60℃. Molecular modeling and site-directed mutagenesis analyses demonstrated that TtGlyDH had an atypical dinucleotide binding motif (GGG motif) and a basic residue Arg43, both related to dinucleotide binding.

Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071

  • Su, Hongfei;Mai, Zhimao;Yang, Jian;Xiao, Yunzhu;Tian, Xinpeng;Zhang, Si
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1067-1076
    • /
    • 2016
  • The gene encoding lipase (Lip98) from Aeromicrobium sp. SCSIO 25071 was cloned and functionally expressed in Escherichia coli. Lip98 amino acid sequence shares the highest (49%) identity to Rhodococcus jostii RHA1 lipase and contains a novel motif (GHSEG), which is different from other clusters in the lipase superfamily. The recombinant lipase was purified to homogeneity with Ni-NTA affinity chromatography. Lip98 showed an apparent molecular mass of 30 kDa on SDS gel. The optimal temperature and pH value for enzymatic activity were recorded at 30℃ and 7.5, respectively. Lip98 exhibited high activity at low temperatures with 35% maximum activity at 0℃ and good stability at temperatures below 35℃. Its calculated activation energy was 4.12 kcal/mol at the low temperature range of 15-30℃. Its activity was slightly affected by some metal ions such as K+, Ca2+, and Na+. The activity of Lip98 was increased by various organic solvents such as DMSO, ethanol, acetone, and hexane with the concentration of 30% (v/v) and retained more than 30% residual activity in neat organic solvent. The unique characteristics of Lip98 imply that it is a promising candidate for industrial application as a nonaqueous biocatalyst and food additive.

Growth of Nanocrystalline Diamond Films on Poly Silicon (폴리 실리콘 위에서 나노결정질 다이아몬드 박막 성장)

  • Kim, Sun Tae;Kang, Chan Hyoung
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.352-359
    • /
    • 2017
  • The growth of nanocrystalline diamond films on a p-type poly silicon substrate was studied using microwave plasma chemical vapor deposition method. A 6 mm thick poly silicon plate was mirror polished and scratched in an ultrasonic bath containing slurries made of 30 cc ethanol and 1 gram of diamond powders having different sizes between 5 and 200 nm. Upon diamond deposition, the specimen scratched in a slurry with the smallest size of diamond powder exhibited the highest diamond particle density and, in turn, fastest diamond film growth rate. Diamond deposition was carried out applying different DC bias voltages (0, -50, -100, -150, -200 V) to the substrate. In the early stage of diamond deposition up to 2 h, the effect of voltage bias was not prominent probably because the diamond nucleation was retarded by ion bombardment onto the substrate. After 4 h of deposition, the film growth rate increased with the modest bias of -100 V and -150 V. With a bigger bias condition(-200 V), the growth rate decreased possibly due to the excessive ion bombardment on the substrate. The film grown under -150V bias exhibited the lowest contact angle and the highest surface roughness, which implied the most hydrophilic surface among the prepared samples. The film growth rate increased with the apparent activation energy of 21.04 kJ/mol as the deposition temperature increased in the range of $300{\sim}600^{\circ}C$.

Covalent Coupling of ${\beta}-Fructofuranosidase$ on Microbial Cells (미생물 세포에 공유결합으로 고정화시킨 ${\beta}-Fructofuranosidase$에 관한 연구)

  • Uhm, Tai-Boong;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.267-272
    • /
    • 1984
  • ${\beta}-Fructofuranosidase$ was immobilized covalently on the oxidized microbial wall of a Penicillium spp. 'PS-8', which is totally different from the conventional whole cell immobilization in concept. The immobilization of ${\beta}-fructofuranosidase$ by a series of treatments; oxidation of microbial cells with sodium metaperiodate, enzyme loading on the oxidized cells, extrusion, and crosslinking induced by glutaradehyde, were carried out. The final product had a good mechanical strength and showed 26% of the applied enzyme activity. The specific activity was 750 units per g of the dry cell product. The immobilized enzyme showed the kinetic parameters as follows; optimum pH at 5, optimum temperature at $55^{\circ}C$, activation energy of 19 kJ $mol^{-1}$, and apparent Km of 55 mM.

  • PDF

Crystal Defects and Grain Boundary Properties in ZnO-Zn2BiVO6-Co3O4-Cr2O3-CaCO3 Varistor (ZnO-Zn2BiVO6-Co3O4-Cr2O3-CaCO3 바리스터 내의 결정결함과 입계특성)

  • Hong, Youn-Woo;Ha, Man-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.276-280
    • /
    • 2019
  • In this study, we investigated the crystal defects and grain boundary properties in a ZZCCC ($ZnO-Zn_2BiVO_6-Co_3O_4-Cr_2O_3-CaCO_3$) varistor, with the liquid-phase sintering aid $Zn_2BiVO_6$ developed by our laboratory. The ZZCCC varistor sintered at $1,200^{\circ}C$ exhibited excellent nonlinear current-voltage characteristics (${\alpha}=63$), with oxygen vacancy ($V_o^*$ ; 0.35 eV) as a main defect, and an apparent activation energy of 1.1 eV with an electrically single grain boundary. Therefore, among the various additives to improve the electrical properties of ZnO varistors, if $Zn_2BiVO_6$ is used as a liquid phase sintering aid, it will be ideal to use Co for the oxygen vacancy and Ca for the electrically single grain boundary. This will allow the good properties of ZnO varistors to be maintained up to high sintering temperatures.

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Characteristics of Anion Exchange Measured by the Rate of Hemolysis in Human Erythrocyte (사람의 적혈구에서 용혈성을 이용하여 측정한 음이온 교환특성)

  • Woo, Jae-Suk;Kim, Yong-Keun;Hwang, Il-Yong
    • The Korean Journal of Physiology
    • /
    • v.20 no.2
    • /
    • pp.218-224
    • /
    • 1986
  • The characteristics of anion exchange with internal $HCO_3\;^{-}\;(or\;OH^-)$ was studied by determining the time course of hemolysis in isoosmotic ammonium salt solution in human erythrocytes. The effects of inhibitors, pH and temperature on the exchange between internal $HCO_3\;^-\;(or\;OH^-)$ and external $Cl^-$ were observed and the permeabilities of various organic and inorganic anions were also measured. The results were compared with data previously reported from the experiments using radioisotopes. The results are as follows; 1) SITS $H_2DIDS$ and furosemide inhibited the hemolysis of erythrocytes in isoosmotic $NH_4Cl$ solution in a dose·dependent manner, and the concentrations for lengthening twice the time for $half-hemloysis(t_{1/2})\;were\;2.3{\times}10^{-7},\;1.3{\times}10^{-7}\;and\;2.5{\times}10^{-5}M$, respectively. 2) Acetazolamide also shifted the time-dependent hemolytic curve to the right in a dose-dependent manner, and the concentrations for lengthening twice $t_{1/2}\;was\;2.4{\times}10^{-5}M$. 3) The time-dependent hemolysis was delayed by decreasing pH from 7.0 to 6.2, but w·as not affected by the change of pH in the range of 7.0 to 8.2. 4) The time for $half-hemloysis(t_{1/2})$ showed a temperature-dependency and Arrhenius plot exhibited a break point at $20^{\circ}C$. The apparent activation energy calculated from this plot was 18.1 kcal/mol between $2^{\circ}C-20^{\circ}C$ and 11.2 kcal/mol between $20^{\circ}C-37^{\circ}C$, respectively. 5) The apparent permeabilities of various inorganic anions based on $t_{1/2}$ were in the order of $Cl^->NO_{3}\;^->SCN^->SO_4\;^{2-}>SSO_3\;^{2-}>HPO_4\;^{2-}$. which was similar with the previous reports based on the experiment using radioisotopes. The results Obtained from this study are comparable with the previous data reported from the experiments using radioisotopes. This indicates that the hemolysis of erythrocytes in isoosmotic ammonium salt solution can be used as a simple and good method for the study of anion exchange in erythrocyte membrane.

  • PDF

A Kinetic Study of Steam Gasification of Woodchip, Sawdust and Lignite (나무칩, 톱밥 바이오매스와 갈탄의 수증기 가스화반응 특성 연구)

  • Kim, Kyungwook;Bungay, Vergel C.;Song, Byungho;Choi, Youngtai;Lee, Jeungwoo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.506-512
    • /
    • 2013
  • Biomass and low-grade coals are known to be better potential sources of energy compared to crude oil and natural gas since these materials are readily available and found to have large reserves, respectively. Gasification of these carbonaceous materials produced syngas for chemical synthesis and power generation. Woodchip, sawdust and lignite were gasified with steam in a thermobalance reactor under atmospheric pressure in order to evaluate their kinetic rate information. The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (20~90 kPa) on the gasification rate were investigated. The three different types of gas-solid reaction models were applied to the experimental data to predict the behavior of the gasification reactions. The modified volumetric model predicted the conversion data well, thus the model was used to evaluate kinetic parameters in this study. The observed activation energy of biomass, sawdust and lignite gasification reactions were found to be in reasonable range and their rank was found to be sawdust > woodchip > lignite. The expression of apparent reaction rates for steam gasification of the three solids was proposed to provide basic information on the design of coal gasification processes.

Effect of Thermal Aging on the Intermetallic compound Growth kinetics in the Cu pillar bump (Cu pillar 범프 내의 금속간화합물 성장거동에 미치는 시효처리의 영향)

  • Lim, Gi-Tae;Lee, Jang-Hee;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.15-20
    • /
    • 2007
  • Growth kinetics of intermetallic compound (IMC) at various interface in Cu pillar bump during aging have been studied by thermal aging at 120, 150 and $165^{\circ}C$ for 300h. In result, $Cu_6Sn_5\;and\;Cu_3Sn$ were observed in the Cu pillar/SnPb interface and IMC growth followed parabolic law with increasing aging temperatures and time. Also, growth kinetics of IMC layer was faster for higher aging temperature with time. Kirkendall void formed at interface between Cu pillar and $Cu_3Sn$ as well as within the $Cu_3Sn$ layer and propagated with increasing time. $(Cu,Ni)_6Sn_5$ formed at interface between SnPb and Ni(P) after reflow and thickness change of $(Cu,Ni)_6Sn_5$ didn't observe with aging time. The apparent activation energies for growth of total $(Cu_6Sn_5+Cu_3Sn),\;Cu_6Sn_5\;and\;Cu_3Sn$ intermetallics from measurement of the IMC thickness with thermal aging temperature and time were 1.53, 1.84 and 0.81 eV, respectively.

  • PDF