• Title/Summary/Keyword: Apparatus design

Search Result 571, Processing Time 0.039 seconds

A Magnet Design and Analysis for DAE JEON EXPO'93 Magnetic Levitation System (대전 EXPO'93 자기부상열차개발을 위한 전자석의 설계 및 특성해석)

  • Koo, Dae-Hyun;Shin, Pan-Seok;Kim, Yong-Joo;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.106-109
    • /
    • 1991
  • A magnet is designed and analysed using a finite element method program (FLUX2D), which will be employed to the 2-module MAGLEV test vehicle for developing of DAE JEON EXPO '93 Magnetic Levitation System. Levitation force. guidance force and thermal characteristics are examined according to the variation of parameters of the magnet ie. pole width, window area, rail configuration, input current and so on. An optimal geometry of the magnet are provided.

  • PDF

A Study on the Design and Control Super-Precision Coarse and Fine Positioning Apparatus (초정밀 조미동 위치결정기구의 설계 및 제어에 관한 연구)

  • Kim, J.Y.;Cho, Y.T.;O, S.M.;Park, K.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.88-93
    • /
    • 1996
  • The study was carried out development a pricision positioning apparatus, consisting of DG servo motor and piezoelectric actuatior. This system is composed of fine and coarse apparatus, measurement system and control system. Peezoelectric actuator is designed for fine positioning. Coarse positioning using lead screw is droved by DC servo motor. Control system output a signal from laser interfermeter and capacitive sensor to amplifer of DC servo motor and piezoelectric actuator after digital signal processing (DSP). Resolution of this apparatus measure with laser interferometer and microsense

  • PDF

A Study on the Lightning Impulse Dielectric Characteristics of Air for the Development of Air-Insulated High Voltage Apparatuses (고전압 전력기기 개발을 위한 기중 절연파괴특성 분석에 관한 연구)

  • Nam, Seok-Ho;Kang, Hyoung-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1005-1010
    • /
    • 2011
  • The accidents caused by dielectric instability have been increasing in power grid. It is important to enhance the dielectric reliability of a high voltage apparatus to reduce the damage from electrical hazards. To develop an electrically reliable high voltage apparatus, the experimental study on the electrical breakdown field strength is indispensable, as well as theoretical approach. In this paper, the lightning impulse breakdown characteristics considering utilization factors are studied for the establishment of insulation design criteria of an high voltage apparatus. The utilization factors are represented as the ratio of mean electric field to maximum electric field. Dielectric experiments are performed by using several kinds of sphere-plane electrode systems made of stainless steel. As a result, it is found that dielectric characteristics are affected by not only maximum electric field intensity but also utilization factors of electrode systems. The results are expected to be applicable to designing the air-insulated high voltage apparatuses.

The study on low energy electron diffraction (LEED) apparatus (저 에너지 전자 회절 장치의 제작에 관한 연구)

  • 권순남;이재경;이충만;정광호
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.177-180
    • /
    • 1997
  • Low Energy Electron Diffraction (LEED) apparatus was made to confirm the surface structure and to determine the direction of the structure for the Angle Resolved Ultraviolet Photoemission Spectroscopy(ARUPS) study. To determine the parameters needed for the design of the apparatus, computer simulation was used. Our LEED has 3 grids. The distance between sample and sccreen is 75 mm, and the viewing angle is $80^{\circ}$. The LEED apparatus was tested by investigating the Si(001) and $Al_2O_3$(0001) surface.

  • PDF

A study on the design and control super-precision coarse and fine positioning apparatus (초정밀 조미동 위치결정기구의 설계 및 제어에 관한 연구)

  • 김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.18-23
    • /
    • 1995
  • The study was carried out to develope a precision positioning apparatus, consisting of DC servo motor and piezoelectric actuator. This system is composed of fine and coarse apparatus, measurement system and control system, Piezoelectric actuator is designed for fine positioning. Coarse positioning using lead screw is drived by DC servo motor. Control system output a signal from laser interferometer and microsense to amplifier of DC servo motor and piezoelectric actuator after digital signal processing(DSP). Resolution of this apparatus measure with laser interferometor and microsense

  • PDF

Accurate Positioning with a Pneumatic Driving Apparatus (공기압 구동장치를 이용한 정밀위치제어)

  • Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.21-27
    • /
    • 2015
  • The accurate position control of pneumatic driving apparatus is considered in this paper. In pneumatically actuated positioning systems, accurate positioning as an electrical servo has been known to be difficult because of the friction force and compressibility of the air. For good control performance of the pneumatic system, an actuator mounted with externally pressurized air bearings is produced to compensate for friction force. For the controller design, the governing equation of the pneumatic driving apparatus is derived. In order to reduce the nonlinear characteristics of the control valve, linearized control input is derived from the relation between the effective area of the valve and the control input. The experimental results are presented to show the results of the improved position control of the pneumatic driving apparatus.

Walking Apparatus Design through Jansen Mechanism (얀센 메커니즘을 통한 보행 기구 설계)

  • Nam, Ungsig
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.473-476
    • /
    • 2016
  • In this study, important design factors in Jansen leg mechanism by which two legs can be driven by only one input like a motor are considered through method of transmitting motion in three-bar linkage and Grashof law in four-bar linkage. In preliminary design, by using EDISON m-sketch and its simulation which can observe trace of feet, two identical four-bar linkages are initially designed and two three-bar linkages are added to four-bar linkages sequentially. By analyzing GL(Ground Length) and GAC(Ground Angle Coefficient), the adequacy of the preliminary design was estimated. Final design of walking apparatus is implemented using CAD software, Assembly2 of EDISON Designer. Finally, proposals to improve software used in this study are suggested.

  • PDF

Development and Field Application of Apparatus for Determination of Limit State Design Strength Characteristics in Weathered Ground (한계상태설계법 지반정수 산정을 위한 풍화대 강도특성 측정장치의 개발 및 현장적용에 관한 연구)

  • Kim, Ki Seog;Kim, Jong Hoon;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.164-179
    • /
    • 2020
  • Applying the limit state design method to geotechnical structures, accuracy and reliability of its design are mainly affected by parameters for geotechnical site characteristics, such as unit weight, Poisson's ratio, deformation modulus, cohesion and frictional angle. When the structures are located in weathered ground, especially, cohesion and frictional angle of ground are closely related with decision of parameters for structures' load and ground's resistance. Therefore, the accurate determination of these parameters, which are commonly obtained from field measurement, such as borehole shear test, are essential for optimum design of geotechnical structures. The 38 case studies, in this study, have been analyzed for understanding the importance of these parameters in designing the ground structures. From these results, importance of field measurement was also ascertained. With these evaluations, an apparatus for determining the strength characteristics, which are fundamental in limit state design (LSD) method, have been newly developed. This apparatus has an improved function as following the ASTM suggestion. Through the field application of this apparatus, the strong point of minimizing the possibility of error occurrence during the measurement has been verified and authors summarized that the essential parameters for LSD can be qualitatively obtained by this apparatus for determination of strength characteristics of weathered ground.

A Study of Design of Sidewalls for Cascade Model with Single Blade Within a 160% Pitch Passage (160% 피치의 유로에서 단일익형에 의한 캐스케이드 실험을 위한 벽면의 설계에 관한 연구)

  • Cho, Chong-Hyun;Kim, Young-Cheol;Ahn, Kook-Young;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.527-536
    • /
    • 2009
  • A cascade apparatus was designed with only one blade. Its passage is a 160% width of the cascade pitch. This kind of apparatus can give more accurate experimental result than those applying multi-blades even though the apparatus is small. However, this causes difficulties to make the periodic condition along the pitchwise direction. In this study, sidewalls were designed to satisfy the periodic condition based on the flow structure using a gradient based optimization and a genetic algorism. The objective function was adopted the surface Mach number obtained on the cascade and fourteen design variables were selected for controlling sidewall shapes. The designed sidewalls using the genetic algorism shows better result.

Correlation between Volume and Pressure of Dichloromethane using Equation of State (상태방정식을 이용한 디클로로메탄의 부피와 압력간 상관관계 연구)

  • Kwon, Woong;Kim, Jiyun;Lee, Kwonyun;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.141-146
    • /
    • 2021
  • Supercritical fluid has excellent dissolving power for various materials based on low viscosity and high diffusion coefficient and is used as solvents in various chemical processes. However, its industrial application can be very tricky because the design, especially the size of the supercritical apparatus, should be carefully chosen to optimize the cost and the production of supercritical fluidic state. And the first step of the supercritical fluid apparatus design is to choose the appropriate size of the reactor vessel to produce supercritical fluid above its critical pressure and temperature. Therefore, this study aims to analyze thermodynamic behaviors of dichloromethane based on ideal gas, van der Waals, Redlich-Kwong, Soave-Redlich-Kwong, and Peng-Robinson equations of state. The correlation between the volume and pressure of dichloromethane at 200℃ was revealed and it can be used to design the optimized size of the supercritical apparatus for industrial production.