• Title/Summary/Keyword: Apatite

Search Result 281, Processing Time 0.025 seconds

Comparative Study on Laboratory Experimental Results for Removal Efficiencies of Heavy Metals in AMD & ARD using Natural Materials (천연물질을 이용한 AMD및 ARD내의 중금속 저감효율 실내실험 결과 비교연구)

  • 최정찬;이민희
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.133-142
    • /
    • 2004
  • The purpose of this study is to evaluate a laboratory test on arsenic removal effciency for ARD(Acid Rock Drain-age) using limestone and apatite, and on heavy metals removal efficiencies for AMD(Acid Mine Drainage) using apatite and fish bone. As a result of the laboratory test, pH, arsenic removal rate of limestone & apatite are inversely proportional to flow rates and apatite removes 100% of arsenic while limestone removes 37% of arsenic at 0.6$m{ell}$/min/kg flow rate in case of ARD treatment. And the dissolution amount of apatite is twenty five times higher than that of limestone. In case of AMD treatment, fish bone shows higher dissolution rate than apatite, and pH of outlet water reacted with fish bone is higher than that reacted with apatite. The heavy metal removal rates of fish bone are also higher than that of apatite except arsenic removal rate. The precipitate resulted from fish bone reaction with AMD seems to be biological sludge type while that resulted from apatite with AMD is inorganic solid which can settle easily compared with the biological sludge and can be cemented by gypsum. As the results, apatite can be used as a precipitant for the polluted mine waters showing wide range of pH and fish bone can be used for highly contaminated AMD.

Laboratory Study on the Removal of Heavy Metals Using Apatite for Stabilization of Tailings at the Ulsan Abandoned Iron Mine (울산폐철광산 광미 안정화를 위한 인회석의 중금속 제거 실내실험)

  • Choi, Jung-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to evaluate laboratory experiments on arsenic and cadmium removal from tailings using apatite at the Ulsan Abandoned Iron Mine, and to develop a stabilization technique. The results of this study show that the permeability is decreased proportionally to the amount of apatite when it is added below 8%, while this is almost constant when the amount of apatite is added above 10%. The water extraction test from tailings using deionized water for several days shows that pH (7.4-8.4) is almost constant or slightly increased when apatite is added below 8%, while it is slightly decreased when apatite is added above 10%. According to TCLP test, reduction of concentrations of heavy metals in leachate is proportional to amount of apatite added. It seems that precipitates generated from leachate-apatite chemical reaction are not redissolved. As a result, cadmium and arsenic in leachate is mostly removed when apatite is added above 10%, and it is suggested that a proper technique should be selected for field application because either mixed or layered method shows almost same removal efficiencies of cadmium and arsenic in tailings.

Efficiency of Apatite and Limestone in Removing Arsenic from Acid Rock Drainage at the Goro Abandoned Mine (인회석 및 석회석을 이용한 고로폐광산 ARD 내의 비소 저감효율 연구)

  • Park, Myung-Ho;Lee, Young-Woo;Hur, Yon-Kang;Park, Hae-Cheol;Sa, Sung-Oh;Choi, Jung-Chan
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2011
  • An active apatite drainage system has been developed at the Goro abandoned mine, comprising a grit cell, a reaction cell, and a precipitation pond. Leachate from an abandoned adit and tailing ponds is collected in a pipeline and is transported to the apatite drainage system under the influence of the hydraulic gradient. The results of a laboratory experiment performed in 2004 indicate that the reaction cell requires 38.8 ton/year of apatite and that precipitate will have to be removed from the precipitation pond every 3 months. The purpose of this study is to evaluate a laboratory test on the efficiency of limestone and apatite in removing arsenic from ARD (acid rock drainage), and to evaluate the suitability of materials for use as a precipitant for the leachate treatment disposal system. The laboratory tests show that the arsenic removal ratios of limestone and apatite are 67.4%-98.3%, and the arsenic removal ratio of apatite is inversely proportional to its grain size. The arsenic compounds are assumed to be Johnbaumnite and Ca-arsenic hydrate. Therefore, apatite and phosphorous limestone can be used as a precipitant for the removal of arsenic, although it is difficult to remove arsenic from ARD when it occurs in low concentrations.

Field Experiment on AMD Treatment Using Apatite and Fish Bone at the Ilkwang Mine (인회석 및 생선뼈를 이용한 일광광산 AMD 처리 현장실험)

  • Choi, Jung-Chan
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.563-570
    • /
    • 2005
  • The purposes of this study are to examine a field test on heavy metal removal efficiency for AMD(Acid Mine Drainage) using fish bone and apatite, and to compare those results of the laboratory & the field tests. The duration of the field test was about one month and flow rates of AMD varied from 2.53 l/min to 12.8 l/min. From the result of the field test, removal efficiencies of apatite and those of fish bone are high for As, Fe, and Pb while those of fish born is higher than those of apatite far Al, Cd, Cu and Zn which are similar to the result of the previous laboratory test. In particular, average arsenic removal efficiency of apatite is higher$(84\%)$ than that of fish bone$(75\%)$ like the result of the previous laboratory test. In case of precipitates of phosphate compounds which are generated from chemical reaction between apatite/fish bone and AMD, those generated from apatite/AMD reactionform powder-shape while those created from fish bone/AMD reaction seem to be sludge. Therefore, apatite will be used as a precipitant for mine drainages having wide range of pH based on previous studies while fish bone will be applied as a precipitantfor AMD having lower PH and high concentration of heavy metals.

Apatite Formation of NaOH-treated Porous PCL Scaffolds in Simulated Body Fluid (NaOH 처리에 따른 다공성 PCL 지지체의 의사체액 환경에서의 아파타이트 형성)

  • Lee, Hyang-Mi;Jin, Hyeong-Ho;Hyun, Yong-Taek;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.622-627
    • /
    • 2007
  • Porous poly(e-caprolactone) (PCL) scaffolds were fabricated by salt leaching method. The PCL scaffolds were treated with aqueous NaOH for 0h, 2h, 4h, 8h, and 12h at $40^{\circ}C$. The NaOH-treated PCL scaffolds were dipped in $CaCl_2$ and $K_2HPO_4{\cdot}_3H_2O$ solution alternately three times to induce apatite nuclei onto the surface of the scaffolds. The NaOH-treated PCL scaffolds were immersed into SBF solution for 1day to grow the apatite. The apatite formation were investigated as a fuction of NaOH treatment time. The hydrophilicty and surface area of the PCL scaffolds were increased with NaOH-treatment time. The NaOH-treated PCL scaffolds were successfully formed a dense and uniform bone-like apatite layer after immersion for 1 day in SBF solution.

A STUDY ON THE CYTOTOXICITY OF THE ROOT CANAL SEALERS (근관충전용(根管充塡用) sealer의 세포독성(細胞毒性)에 관한 연구(硏究))

  • Lee, Seung-Jong;Kim, Yung-Hai
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.25-40
    • /
    • 1991
  • Four root canal sealers, Apatite Root Sealer I and II composed mainly of hydroxyapatite/tricalciumphosphate, Sealapex containing calcium hydroxide, and Roth Sealer composed of zinc oxide - eugenol were compared on the culture of L929 fibroblasts. MIT (Methyl Thiazole Tetrazolium Bromide) colorimetric technique was used to measure the mitochondrial dehydrogenase activity. Results were as follows: 1. Hydroxyapatite/tricalcium phosphate mixed sealers were significantly less toxic compared with calcium hydroxide and zinc oxide - eugenol type sealers. High pH of the calcium hydroxide sealer and release of eugenol component from the zinc oxide - eugenol type sealer were presumed to be the cause of the toxicity of these two sealers. In no cases, there were more cytoblastic effects in hydroxyapatite/tricalcium phosphate mixed sealers compared to the control groups. 2. In all experimental groups, toxicity was decreased as dilutions were increased. However in zinc oxide-eugenol type sealer the cell activity was weakened for all dilution groups. 3. Regarding the effect of setting time, Apatite I and Sealapex were less toxic as the setting progressed. Apatite II kept constant regardless of the different time ellapsed after setting but Roth sealer revealed significantly higher toxicity for all experimental groups. 4. Comparing two different culture periods of 24 hours and 72 hours, Apatite I showed higher cell activities in longer period(72 hours) while Apatite II did not. Sealapex and Roth sealer, however, showed significantly lower cell activities in longer period.

  • PDF

Apatite Single Crystal Growth by FZ Method (FZ법에 의한 Apatite 단결정 성장)

  • 강승민;신재혁;한종원;최종건;전병식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.93-98
    • /
    • 1993
  • In the ternary system of $CaF_2-CaO-P_2O_5$. Apatite$(Ca_{10}(PO_4)_6F_2)$ single crystal having a congruent point was grown by FZ process. The atmospheric condition was kept by oxygen blowing. Adjusting the growth parameters of rotation rate, growth rate and gas amount, we tried to find the optimum growth condition. By partly substituting Ca as Co element, the absorption of infrared is increased and the color effect was observed. Using the Laue back reflection, XRD and FTIR analysis, the characterization of the crystal was carried out.

  • PDF

Biocompatibility and Mechanical Performance of Ni-Ti

  • Kim, J.H.;Choi, Y.C.;Kim, H.S.;Hong, S.I.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1257-1258
    • /
    • 2006
  • Biomimetic apatite deposition behaviors and mechanical performance for as-rolled and annealed Ni-Ti plates were investigated . A good biomimetic apatite formation and excellent mechanical performance of Ni-Ti suggests that Ni-Ti can be an excellent candidate material as orthopedic implants.

  • PDF

Fractions of Phosphorus in the Surficial Sediment of Dongjin Sea Area (동진강 해역 표층 퇴적물 중 인의 화학적 형태별 함량)

  • Lee, Hyun-Jeong;Son, Jae-Gwon;Park, Bong-Ju;Cho, Jae-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.4 s.29
    • /
    • pp.25-31
    • /
    • 2005
  • The present study was carried out to investigate the P fractions of surfical sediment of Dongjin sea area. Furthermore, potential released loading of adsorbed and non-apatite inorganic phosphorus were investigated in the sediment of Dongjin sea area. The contents of phosphorus fractions of the surficial sediment in Dongjin sea area were adsorbed-P 0.06%, nonapatite inorganic-P 13.02%, apatite-P 60.22%, and residual-P 26.70%. The most abundant fraction was apatite-P, residual-P, nonapatite inorganic-P, and adsorbed-P followed it. Potential released loading of adsorbed and non-apatite inorganic phosphorus surveyed 2.6 and 597ton respectively. These results show that sediment-managing and interception from external pollution are needed for water environmental maintenance of Dongjin sea area.

Field Experiment on Iron and Aluminum Removal from Acid Mine Drainage Using an Apatite Drain System (인회석 배수시스템을 이용한 산성수의 철 및 알루미늄 제거에 대한 현장경험)

  • Choi, Jung-Chan;West, Terry R.
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.315-323
    • /
    • 1996
  • An apatite drain was constructed on September 30, 1994 at the Green Valley Abandoned Coal Mine site near Terre Haute in west central Indiana. The primary objective of this experiment is to evaluate the long-term ability of the apatite drain to mitigate acid mine drainage (AMD) under field conditions. The drain 9 m long, 3.3 m wide, and 0.75 m deep, contain 95 rum to No. 30 mesh-size apatite ore (francolite) and receive AMD seepage from reclaimed gob piles, and designed according to the laboratory testing. The apatite drain was covered with limestone riprap and filter fabric to protect the drainage system from stormwater and siltation. The drain consists of about 50 metric tons of apatite ore obtained from a phosphate mine in Florida. A gabion structure was constructed downstream of the apatite drain to create a settling pond to collect precipitates. Apatite effectively removed iron up to 4,200 mg/l, aluminum up to 830 mg/l and sulfate up to 13,430 mg/l. The pH was nearly constant for the influent and effluent, ranging between 3.1 and 4.3. Flow rate measured at the gabion structure ranged from 3 to 4.5 l/m. Precipitates of iron and aluminum phosphate (yellow and white suspendid solids) continued to accumulate in the settling pond.

  • PDF