• Title/Summary/Keyword: Antitumor action

Search Result 99, Processing Time 0.035 seconds

Studies on the Biological Activities of the Constituents of Ailanthi Cortex Radicis III - Antitumor activities of dichloromethane fration - (저근백피성분의 생리활성에 관한 연구(III) - 디클로드메탄분획의 항암작용 -)

  • Kim, Jong;Lee, Chung-Kyu
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.54-58
    • /
    • 1997
  • The cytotoxic activities of methanolic extract and its fractions of Ailanthi Cortex Radicis and column chromatographic eluates of its dichloromethane fraction (DCM fr.) were investigated. DCM fr. Showed the strongest cytotoxicity against hepatoma cells. Furthermore, the active equates 1-3, 8 and 9 were obtained. Effects on free radical generation and the growth of vascular endothelial cells were tested to elucidate the action mechanism of anticancer activity. Eluates 1-3 stimulated free radical generation, while eluates 8 and 9 showed no changes. Especially, eluates 8 and 9 efffectively inhibited the proliferation of vascular endothelial cells in a dose- dependant manner. It is speculated that the anticancer effects of eluates 1-3, 8 and 9 might be due to free radical generation and inhibition of endothelial cell growth, respectively.

  • PDF

Inhibitory effect of chitosan oligosaccharides on the growth of tumor cells

  • Kim, Se-Kwon;Nam, Mi-Young;Nam, Kyung-Soo
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.416-417
    • /
    • 2000
  • Chitin, a poly $\beta$-(1longrightarrow14)-N-acetyl-D-glucosamine, is best known as a cell wall component of fungi and as a skeletal materials of invertebrates. Chitosan is derived from chitin by deacetylation in the presence of alkali. Chitosan has been developed as new physiological materials since it possesses antibacterial activity, hypocholesterolemic activity and antihypertensive action. However, the actions of chitosan in vivo still remain ambiguous as the physiological functional properties because most animal intestines, especially the human gastrointestinal tract, do not possess enzyme such as chitosanase which directly degrade the $\beta$-glucosidic linkage in chitosan, and consequently the unbroken polymers may be poorly absorbed into the human intestine. Therefore, recent studies as chitosan have attracted interest for chitosan oligosaccharides, because the oligosaccharides process not only water-soluble property but also versatile functional properties such as antitumor activity, immune-enhancing effects, enhancement of protective effects against infection with some pathogens in mice and antimicrobial activity (Kingsnorth et al., 1983, Mori et al., 1997). (omitted)

  • PDF

Study of antimicrobial activity and the mode of action of Anal P5 peptide

  • Park, Yoonkyung;Hahm, Kyung-Soo
    • Journal of Integrative Natural Science
    • /
    • v.1 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • In a previous study, we showed that Cecropin A (1-8)-Magainin 2 (1-12) hybrid peptide (CA-MA)'s analogue, Anal P5, exhibit broad-spectrum antimicrobial activity. Anal P5, designed by flexible region (positions 9, 10)-substitution, Lys- (positions 4, 8, 14, 15) and Leu- (positions 5, 6, 12, 13, 16, 17, 20) substitutions, showed an enhanced antimicrobial and antitumor activity without hemolysis. The primary objective of the present study was to gain insight into the relevant mechanisms of antimicrobial activities of Anal P5 by using flow cytometric analysis. Anal P5 exhibits strong antifungal activity in a salt concentration independent manner. In addition, Anal P5 causes significant morphological alterations of the bacterial surfaces as shown by scanning electron microscopy, supporting its antibacterial activity. Its potent antibiotic activity suggests that Anal P5 is an excellent candidate as a lead compound for the development of novel antibiotic agents.

  • PDF

Gut microbiota-mediated pharmacokinetics of ginseng saponins

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.255-263
    • /
    • 2018
  • Orally administered ginsengs come in contact with the gut microbiota, and their hydrophilic constituents, such as ginsenosides, are metabolized to hydrophobic compounds by gastric juice and gut microbiota: protopanxadiol-type ginsenosides are mainly transformed into compound K and ginsenoside Rh2; protopanaxatriol-type ginsenosides to ginsenoside Rh1 and protopanaxatriol, and ocotillol-type ginsenosides to ocotillol. Although this metabolizing activity varies between individuals, the metabolism of ginsenosides to compound K by gut microbiota in individuals treated with ginseng is proportional to the area under the blood concentration curve for compound K in their blood samples. These metabolites such as compound K exhibit potent pharmacological effects, such as antitumor, anti-inflammatory, antidiabetic, antiallergic, and neuroprotective effects compared with the parent ginsenosides, such as Rb1, Rb2, and Re. Therefore, to monitor the potent pharmacological effects of ginseng, a novel probiotic fermentation technology has been developed to produce absorbable and bioactive metabolites. Based on these findings, it is concluded that gut microbiota play an important role in the pharmacological action of orally administered ginseng, and probiotics that can replace gut microbiota can be used in the development of beneficial and bioactive ginsengs.

Cancer Chemopreventive Potential of Procyanidin

  • Lee, Yongkyu
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.273-282
    • /
    • 2017
  • Chemoprevention entails the use of synthetic agents or naturally occurring dietary phytochemicals to prevent cancer development and progression. One promising chemopreventive agent, procyanidin, is a naturally occurring polyphenol that exhibits beneficial health effects including anti-inflammatory, antiproliferative, and antitumor activities. Currently, many preclinical reports suggest procyanidin as a promising lead compound for cancer prevention and treatment. As a potential anticancer agent, procyanidin has been shown to inhibit the proliferation of various cancer cells in "in vitro and in vivo". Procyanidin has numerous targets, many of which are components of intracellular signaling pathways, including proinflammatory mediators, regulators of cell survival and apoptosis, and angiogenic and metastatic mediators, and modulates a set of upstream kinases, transcription factors, and their regulators. Although remarkable progress characterizing the molecular mechanisms and targets underlying the anticancer properties of procyanidin has been made in the past decade, the chemopreventive targets or biomarkers of procyanidin action have not been completely elucidated. This review focuses on the apoptosis and tumor inhibitory effects of procyanidin with respect to its bioavailability.

Melissa parviflora Benth. A Review on its Ethnobotany, Phytochemistry and Pharmacological profile

  • Khan, Afshan;Siddiqui, Aisha;Jamal, Anwar
    • CELLMED
    • /
    • v.9 no.4
    • /
    • pp.3.1-3.6
    • /
    • 2019
  • Melissa parviflora Benth. is an aromatic perennial herb of Lamiaceae family. It is one of the most influencial plant and used from centuries in Unani system of medicine for the treatment of various malady such as Epilepsy (mirgi), hemiplegia (falij), migraine (shaqeeqa), insomnia (sehar), indigestion (sue hazm) and palpitation (khafqaan) etc. The Persian physician Avicenna endorsed it for heart problems. It has antitubercular, antipyretic, analgesic and stomachic properties, also used to remove bad breath from mouth, strengthen the gums but its main action is as a tranquillizer and nervine relaxant, it is greatly esteemed for its calming properties. Preliminary performed phytochemical analysis revealed that tannin, flavonoid and saponins are the major components of the plant extract. The plants containing saponins or flavonoids exhibit anticonvulsant activity whereas the flavonoids show various biological activities including antioxidant, anti-inflammatory and cytotoxic-antitumor etc. Keeping in view the tremendous medicinal importance of the plant Badranjboya in Unani Medicine, this review provides updated information on its phytochemistry, therapeutic uses and pharmacological properties.

Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action

  • Kim, Kwangmi
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Abnormal changes in skin color induce significant cosmetic problems and affect quality of life. There are two groups of abnormal change in skin color; hyperpigmentation and hypopigmentation. Hyperpigmentation, darkening skin color by excessive pigmentation, is a major concern for Asian people with yellowe-brown skin. A variety of hypopigmenting agents have been used, but treating the hyperpigmented condition is still challenging and the results are often discouraging. Panax ginseng has been used traditionally in eastern Asia to treat various diseases, due to its immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Recently, several reports have shown that extract, powder, or some constituents of ginseng could inhibit melanogenesis in vivo or in vitro. The underlying mechanisms of antimelanogenic properties in ginseng or its components include the direct inhibition of key enzymes of melanogenesis, inhibition of transcription factors or signaling pathways involved in melanogenesis, decreasing production of inducers of melanogenesis, and enhancing production of antimelanogenic factor. Although there still remain some controversial issues surrounding the antimelanogenic activity of ginseng, especially in its effect on production of proinflammatory cytokines and nitric oxide, these recent findings suggest that ginseng and its constituents might be potential candidates for novel skin whitening agents.

Induction of apoptosis and $\G_1$ arrest by LJ-331, a novel nucleoside analog,in human leukemia HL-60 cells

  • Lee, Eun-Jin;Shin, Dae-Hong;Jeong, Nak-Shin;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.90.2-90.2
    • /
    • 2003
  • In a continuous effort to develop novel anticancer agents we newly synthesized and evaluated the antitumor activity of nucleoside analogues. One analogue, 4-[2-Chlor-6-(3-iodo-benzylamino)-purin-9-yl]-2,3-dihydroxy-cyclopentanecarboxylic acid methylamide (LJ-331), has been shown to exert a potent inhibition of human cancer cell growth in vitro including human lung (A549), stomach (SNU-638) and leukemia (HL-60) cancer cells. Following mechanism of action study revealed that LJ-331 induces cell cycle arrest at the G$_1$ phase in HL-60 cells and evokes apoptotic phenomena such as an increase in DNA ladder intensity and chromatin condensation by a dose-and time-dependent manner. (omitted)

  • PDF

Effect of Selected Persimmon Leaf Components against Sarcoma 180 Induced Tumor in Mice (생쥐 육종에 대한 감잎 성분의 암 성장 억제효과)

  • Kim, Byeong-Gee;Rhew, Tae-Hyong;Choe, Eun-Sang;Chung, Hae-Young;Park, Kun-Young;Rhee, Sook-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.334-339
    • /
    • 1993
  • Antitumor activities of tannin extract and chloroform fraction extract from the persimmon leaves, and 2, 4-decadienal identified as an antimutagenic compound in persimmon leaves were examined in sarcoma 180 implanted tumor in mice by using both light and transmission electron microscopes. Among them, tannin extracted from the persimmon leaves delayed the progression of malignant tumor but the other two did not show any noticeable effect. The antitumorigenic activity of tannin extract might not come from the selective cytotoxicity against tumor cells, but might be, in an anaerobic environment, from the inhibitory action against oncogenic protein synthesis or from the proteolysis of the preformed oncogenic proteins by autophagocytic granules. therefore, the tannin from persimmon leaves might protect cells from fast progression of malignant tumorigensis.

  • PDF

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

  • Cho, Jaeyong;Hwang, In-Sok;Choi, Hyemin;Hwang, Ji Hong;Hwang, Jae-Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1457-1466
    • /
    • 2012
  • Antimicrobial peptides (AMPs) exert antimicrobial activity against Gram-positive and Gram-negative bacteria, fungi, and viruses by various mechanisms. AMPs commonly possess particular characteristics by harboring cationic and amphipathic structures and binding to cell membranes, resulting in the leakage of essential cell contents by forming pores or disturbing lipid organization. These membrane disruptive mechanisms of AMPs are possible to explain according to the various structure forming pores in the membrane. Some AMPs inhibit DNA and/or RNA synthesis as well as apoptosis induction by reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Specifically, mitochondria play a major role in the apoptotic pathway. During apoptosis induced by AMPs, cells undergo cytochrome c release, caspase activation, phosphatidylserine externalization, plasma or mitochondrial membrane depolarization, DNA and nuclei damage, cell shrinkage, apoptotic body formation, and membrane blebbing. Even AMPs, which have been reported to exert membrane-active mechanisms, induce apoptosis in yeast. These phenomena were also discovered in tumor cells treated with AMPs. The apoptosis mechanism of AMPs is available for various therapeutics such as antibiotics for antibiotic-resistant pathogens that resist to the membrane active mechanism, and antitumor agents with selectivity to tumor cells.