• Title/Summary/Keyword: Antioxidant mechanisms

검색결과 392건 처리시간 0.026초

담배연기응축물의 DNA 손상작용과 야채 및 과일추출물의 보호효과 (Antigenotoxicity of Vegetable or Fruit Extract against Cigarette Smoke Condensate)

  • 이형주;허찬;김남이;허문영
    • 약학회지
    • /
    • 제55권3호
    • /
    • pp.251-259
    • /
    • 2011
  • Cigarette smoke condensate (CSC) is known to be carcinogenic compound. CSC contains many organic compounds such as polycyclic aromatic hydrocarbons (PAHs), and heterocyclic amine compounds (HCAs). Reactive oxygen species (ROS) are also generated and induce oxidative DNA damage during the metabolism of CSC. The rat microsome mediated and DNA repair enzyme treated comet assays together with conventional comet assay were performed to evaluate the mechanisms of CSC genotoxicity. The organic extract of CSC induced oxidative and microsome mediated DNA damage. Vitamin C as a model antioxidant reduced DNA damage in endonuclease III treated comet assay. One of flavonoid, galangin as a CYP1A1 inhibitor, reduced DNA damage in the presence of S-9 mixture. The ethanol extracts of the mixed vegetables (BV) or the mixed fruits (BF) showed potent inhibitory effects against CSC induced DNA damage with oxidative DNA lesions and in the prescence of S-9 mixture. These results indicate that BV and BF could prevent CSC-induced cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 in mammalian cells.

Evaluation of leaf rust resistance and characteristics of Korean wheats

  • Kim, Minseo;Lee, Aro;Truong, Hai An;Kang, Chon-Sik;Choi, Changhyun;Chung, Namhyun;Lee, Hojoung;Lee, Byung Cheon
    • Journal of Applied Biological Chemistry
    • /
    • 제62권3호
    • /
    • pp.293-297
    • /
    • 2019
  • Leaf rust is the most widespread and destructive fungal disease, and outbreaks have always caused considerable losses in wheat yields. Thus, worldwide increases in wheat production depend on the development of leaf rust-resistant wheat varieties. In this study, we evaluated the resistance of forty Korean wheat cultivars to leaf rust at the seedling stage. Only two Korean wheats, Ol and Jonong, were resistant to leaf rust, whereas the remaining thirty-eight Korean wheats were susceptible to leaf rust. The Ol and Jonong varieties presented larger dry seed weights and higher antioxidant activity in response to leaf rust than the susceptible wheat varieties. No differences in ${\beta}$-1,3-glucanase activity or chlorophyll content between resistant and susceptible wheat varieties were observed. Overall, these results are important for the development of wheat varieties that are highly resistant to leaf rust and to understand the underlying mechanisms that confer leaf rust resistance.

Suppressive effects of $Schizandra$ $chinensis$ Baillon water extract on allergy-related cytokine generation and degranulation in IgE-antigen complex-stimulated RBL-2H3 cells

  • Chung, Mi-Ja;Kim, Jeong-Mi;Lee, Sang-Chul;Kim, Tae-Woo;Kim, Dae-Jung;Baek, Jong-Mi;Kim, Tae-Hyuk;Lee, Jae-Sung;Kim, Kyoung-Kon;Yoon, Jin-A;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • 제6권2호
    • /
    • pp.97-105
    • /
    • 2012
  • $Schizandra$ $chinensis$ Baillon is a traditional folk medicine plant that is used to treat and prevent several inflammatory diseases and cancer in Korea, but the underlying mechanisms involved in its anti-allergic activity are not fully understood. This study was designed to investigate mechanisms of anti-allergic activity of a $Schizandra$ $chinensis$ Baillon water extract (SCWE) in immunoglobulin E (IgE)-antigen complex-stimulated RBL2H3 cells and to assess whether gastric and intestinal digestion affects the anti-allergic properties of SCWE. Oxidative stress is an important consequence of the allergic inflammatory response. The antioxidant activities of SCWE increased in a concentration-dependent manner. RBL-2H3 cells were sensitized with monoclonal anti-dinitrophenol (DNP) specific IgE, treated with SCWE, and challenged with the antigen DNP-human serum albumin. SCWE inhibited ${\beta}$-hexosaminidase release and expression of interleukin (IL)-4, IL-13, and tumor necrosis factor-alpha (TNF-${\alpha}$) mRNA and protein in IgE-antigen complex-stimulated RBL2H3 cells. We found that digested SCWE fully maintained its antioxidant activity and anti-allergic activity against the IgE-antigen complex-induced activation of RBL-2H3 cells. SCWE may be useful for preventing allergic diseases, such as asthma. Thus, SCWE could be used as a natural functional ingredient for allergic diseases in the food and/or pharmaceutical industries.

Mechanisms of Resorcinol Antagonism of Benzo[a]pyrene-Induced Damage to Human Keratinocytes

  • Lee, Seung Eun;Kwon, Kitae;Oh, Sae Woong;Park, Se Jung;Yu, Eunbi;Kim, Hyeyoun;Yang, Seyoung;Park, Jung Yoen;Chung, Woo-Jae;Cho, Jae Youl;Lee, Jongsung
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.227-233
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and ubiquitous environmental toxin with known harmful effects to human health. Abnormal phenotypes of keratinocytes are closely associated with their exposure to B[a]P. Resorcinol is a component of argan oil with reported anticancer activities, but its mechanism of action and potential effect on B[a]P damage to the skin is unknown. In this study, we investigated the effects of resorcinol on B[a]P-induced abnormal keratinocyte biology and its mechanisms of action in human epidermal keratinocyte cell line HaCaT. Resorcinol suppressed aryl hydrocarbon receptor (AhR) activity as evidenced by the inhibition of B[a]P-induced xenobiotic response element (XRE)-reporter activation and cytochrome P450 1A1 (CYP1A1) expression. In addition, resorcinol attenuated B[a]P-induced nuclear translocation of AhR, and production of ROS and pro-inflammatory cytokines. We also found that resorcinol increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activity. Antioxidant response element (ARE)-reporter activity and expression of ARE-dependent genes NAD(P)H dehydrogenase [quinone] 1 (NQO1), heme oxygenase-1 (HO-1) were increased by resorcinol. Consistently, resorcinol treatment induced nuclear localization of Nrf2 as seen by Western analysis. Knockdown of Nrf2 attenuated the resorcinol effects on ARE signaling, but knockdown of AhR did not affect resorcinol activation of Nrf2. This suggests that activation of antioxidant activity by resorcinol is not mediated by AhR. These results indicate that resorcinol is protective against effects of B[a]P exposure. The mechanism of action of resorcinol is inhibition of AhR and activation of Nrf2-mediated antioxidant signaling. Our findings suggest that resorcinol may have potential as a protective agent against B[a]P-containing pollutants.

Mercury Resistance and Removal Mechanisms of Pseudomonas sp. Isolated Mercury-contaminated Site in Taiwan

  • Luo, Kai-Hong;Chen, Ssu-Ching;Liao, Hung-Yu
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권5호
    • /
    • pp.16-24
    • /
    • 2016
  • A new strain of Pseudomonas sp. was isolated from mercury (Hg)-contaminated sites in Taiwan. This bacterium removed more than 80% of Hg present in the culture medium at 12 h incubation and was chosen for further analysis of the molecular mechanisms of Hg tolerance/removal abilities in this Pseudomonas sp. We used RNA-seq, one of the next-generation sequencing methods, to investigate the transcriptomic responses of the Pseudomonas sp. exposed to 60 mg/L of Hg2+. We de novo assembled 4,963 contigs, of which 10,533 up-regulated genes and 5,451 down-regulated genes were found to be regulated by Hg. The 40 genes most altered in expression levels were associated with tolerance to Hg stress and metabolism. Functional analysis showed that some Hg-tolerant genes were related to the mer operon, sulfate uptake and assimilation, the enzymatic antioxidant system, the HSP gene family, chaperones, and metal transporters. The transcriptome were analyzed further with Gene Ontology (GO) and Cluster of Orthologous Groups (COGs) of proteins and showed diverse biological functions and metabolic pathways under Hg stress.

Progress on Understanding the Anticancer Mechanisms of Medicinal Mushroom: Inonotus Obliquus

  • Song, Fu-Qiang;Liu, Ying;Kong, Xiang-Shi;Chang, Wei;Song, Ge
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1571-1578
    • /
    • 2013
  • Cancer is a leading cause of death worldwide. Recently, the demand for more effective and safer therapeutic agents for the chemoprevention of human cancer has increased. As a white rot fungus, Inonotus obliquus is valued as an edible and medicinal resource. Chemical investigations have shown that I. obliquus produces a diverse range of secondary metabolites, including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Importantly, their anticancer activities have become a hot recently, but with relatively little knowledge of their modes of action. Some compounds extracted from I. obliquus arrest cancer cells in the G0/G1 phase and then induce cell apoptosis or differentiation, whereas some examples directly participate in the cell apoptosis pathway. In other cases, polysaccharides from I. obliquus can indirectly be involved in anticancer processes mainly via stimulating the immune system. Furthermore, the antioxidative ability of I. obliquus extracts can prevent generation of cancer cells. In this review, we highlight recent findings regarding mechanisms underlying the anticancer influence of I. obliquus, to provide a comprehensive landscape view of the actions of this mushroom in preventing cancer.

Perspectives for Ginsenosides in Models of Parkinson's Disease

  • Wei-Ming, Lin;Gille, Gabriele;Radad, Khaled;Rausch, Wolf-Dieter
    • Journal of Ginseng Research
    • /
    • 제31권3호
    • /
    • pp.127-136
    • /
    • 2007
  • Ginseng, the root of Panax species, is a well-known herbal medicine. It has been used as traditional medicine in Korea, China and Japan for thousands of years and now is a popular and worldwide natural medicine. The active principles of ginseng are ginsenosides which are also called ginseng saponins. Traditionally ginseng has been used primarily as a tonic to invigorate weak body functions and help the restoration of homeostasis. Current in vivo and in vitro studies demonstrate its beneficial effects in a wide range of pathological conditions such as cardiovascular diseases, cancer, immune deficiency and hepatotoxicity. Moreover, recent research indicates that some of ginseng's active ingredients exert beneficial actions on aging and neurodegenerative disorders such as Parkinson´s disease. Essentially, antioxidant, antiinflammatory, anti-apoptotic and immunostimulant activities are mostly underlying the postulated ginseng-mediated protective mechanisms. Next to animal studies, data from neural cell cultures contribute to the understanding of these mechanisms which involve decreasing nitric oxide, scavenging of free radicals and counteracting excitotoxicity. This paper focuses on own and other neuroprotective data on ginseng for dopaminergic neurons and intends to show aspects where neuroprotection e.g. by ginsenosides, additionally or preceding standard Parkinson therapy, could come about as a valuable contribution to slow neurodegenerative processes.

황함유 아미노산의 간기능 보호 작용: 간세포암 예방의 가능성 (Hepatoprotective Functions of Sulfur Containing Amino Acids: Possibilities of Hepatocellular Carcinoma Prevention)

  • 고광석
    • 한국식품과학회지
    • /
    • 제44권6호
    • /
    • pp.653-657
    • /
    • 2012
  • While it is known that sulfur containing amino acids (SCAA) are very important in regulating hepatocyte growth and preventing liver-diseases, the fundamental molecular mechanisms of how they exert their hepatoprotective functions are not well known. Since it is widely understood that the hepatic concentrations of S-adenosylmethionine (SAMe) in chronic liver disease patients are severely decreased, the pathophysiological importance of SAMe and its downstream antioxidant, glutathione should be discussed in order to see a big picture of relationship between SCAA and liver diseases. Chronic SAMe deficient mice have shown spontaneous hepatocellular carcinoma development due to impaired mitochondria functions with low levels of prohibitin1 protein, and through deficiency in many genes which are known to ameliorate genetic instability, such as APEX1 and DUSP1, the functions of which are recovered by SAMe treatment. In this review, current knowledge of the basic concepts of the mechanisms through which SCAAs protect the liver will be discussed in detail. Also, a possible tumor suppressor in livers, prohibitin1, and its functional relationship with SAMe will be discussed.

Estrogen Induces CK2α Activation via Generation of Reactive Oxygen Species

  • Jeong, Soo-Yeon;Im, Suhn-Young
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.23-31
    • /
    • 2019
  • The protein kinase $CK2{\alpha}$ (formerly Casein Kinase II) is implicated in tumorigenesis and transformation. However, the mechanisms of $CK2{\alpha}$ activation in breast cancer have yet to be elucidated. This study investigated the mechanisms of $CK2{\alpha}$ activation in estrogen signaling. Estrogen increased reactive oxygen species (ROS) production, $CK2{\alpha}$ activity, and protein expression in estrogen receptor positive ($ER^+$) MCF-7 human breast cancer cells, which were inhibited by the antioxidant N-acetyl-L-cysteine. $H_2O_2$ enhanced $CK2{\alpha}$ activity and protein expression. Human epidermal growth factor (EGF) increased ROS production, $CK2{\alpha}$ activity and protein expression in EGF receptor 2 (HER2)-overexpressing MCF-7 (MCF-7 HER2) cells, but not in MCF-7 cells. Estrogen induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The p38 inhibitor, SB202190, blocked estrogen-induced increases in ROS production, $CK2{\alpha}$ activity and $CK2{\alpha}$ protein expression. The data suggest that ROS/p38 MAPK is the key inducer of $CK2{\alpha}$ activation in response to estrogen or EGF.

셀룰라이트 치료 시 식이 보조제의 임상적 활용을 위한 문헌적 고찰 (Literature Review for the Clinical Application of Dietary Supplements in Cellulite Treatment)

  • 윤정민;이종수
    • 한방비만학회지
    • /
    • 제18권2호
    • /
    • pp.128-143
    • /
    • 2018
  • Objectives: The purpose of this study is to investigate the efficacy and the mechanisms of dietary supplements in cellulite treatment, and then to provide the theoretical and clinical basis for the cellulite treatment in Korean Medicine. Methods: We searched for articles from Korea, China, and English electronic database (Koreanstudies Information Service System [KISS], National Digital Science Library [NDSL], KMbase, Research Information Sharing Service [RISS], Oriental Medicine Advanced Searching Integrated System [OASIS], National Assembly Library, Korean Traditional Knowledge Portal, Google scholar, PubMed, Scopus, China National Knowledge Infrastructure [CNKI]) until April 2018. We chose clinical trial studies by inclusion criteria through titles, abstracts and articles. Results: A total of 10 studies were selected through search. The experimental group had shown more effective cellulite improvement in 90% of studies. Also, improvement of symptoms related with cellulite like pain, edema, heaviness and increase of skin surface temperature were observed in experimental group. In addition, the density of connective tissues of the dermal layer was increased in experimental group. Conclusions: The use of dietary supplements in cellulite treatment is thought to be effective through mechanisms that antioxidant efficacy, microcirculation improvement, interstitial matrix improvement, diuretic effect, and skin metabolic activity effect.