• 제목/요약/키워드: Antioxidant Defense System

검색결과 187건 처리시간 0.036초

Rhus verniciflua Stokes Attenuates Glutamate-induced Neurotoxicity in Primary Cultures of Rat Cortical Cells

  • Jeong, Eun-Ju;Sung, Sang-Hyun;Kim, Jin-Woong;Kim, Seung-Hyun;Kim, Young-Choong
    • Natural Product Sciences
    • /
    • 제14권3호
    • /
    • pp.156-160
    • /
    • 2008
  • The methanolic extract of Rhus verniciflua Stokes (RVS-T) and its fractions (RVS-H, RVS-C, RVS-E and RVS-B) showed significant neuroprotective activity against glutamate-induced toxicity in primary cultures of rat cortical cells. RVS-B, which showed the most potent neuroprotective activity, was further fractionated to yield RVS-B5. Treatment of cortical cells with the RVS-T, RVS-B and RVS-B5 reduced the cellular ROS level and restored the reduced activities of glutathione reductase and SOD induced by glutamate. Although, the activity of glutathione peroxidase was not virtually changed by glutamate, RVS-B5 increased the glutathione peroxidase activity. In addition, these three tested fractions significantly restored the content of GSH which was decreased by glutamate insult in our cultures. Taken together, it could be postulated that RVS extract, in particular its fraction RVS-B5, protected neuronal cells against glutamate-induced neurotoxicity through acting on the antioxidative defense system.

Roles of Oxidative Stress in the Development and Progression of Breast Cancer

  • Nourazarian, Ali Reza;Kangari, Parisa;Salmaninejad, Arash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4745-4751
    • /
    • 2014
  • Oxidative stress is caused by an imbalance in the redox status of the body. In such a state, increase of free radicals in the body can lead to tissue damage. One of the most important species of free radicals is reactive oxygen species (ROS) produced by various metabolic pathways, including aerobic metabolism in the mitochondrial respiratory chain. It plays a critical role in the initiation and progression of various types of cancers. ROS affects different signaling pathways, including growth factors and mitogenic pathways, and controls many cellular processes, including cell proliferation, and thus stimulates the uncontrolled growth of cells which encourages the development of tumors and begins the process of carcinogenesis. Increased oxidative stress caused by reactive species can reduce the body's antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are main factors in the development of cancer. Bimolecular reactions cause free radicals in which create such compounds as malondialdehyde (MDA) and hydroxyguanosine. These substances can be used as indicators of cancer. In this review, free radicals as oxidizing agents, antioxidants as the immune system, and the role of oxidative stress in cancer, particularly breast cancer, have been investigated in the hope that better identification of the factors involved in the occurrence and spread of cancer will improve the identification of treatment goals.

The hepatoprotective effects of silkworm: Insights into molecular mechanisms and implications

  • Young-Min Han;Da-Young Lee;Moon-Young Song;Seung-Won Lee;Eun-Hee Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제46권2호
    • /
    • pp.25-33
    • /
    • 2023
  • The liver, a multifunctional organ, plays a vital role in maintaining overall health and well-being by regulating metabolism, detoxification, nutrient storage, hormone balance, and immune function. Liver diseases, such as hepatitis, cirrhosis, fatty liver disease, and liver cancer, have significant clinical implications and remain a global health concern. This article reviews the therapeutic potential of silkworm larvae (Bombyx mori) and explores their underlying molecular mechanisms in protecting against liver diseases. Silkworm larvae are rich in proteins, vitamins, minerals, and n-3 fatty acids, making them a promising candidate for therapeutic applications. The anti-inflammatory mechanisms of silkworm larvae involve modulating the production of cytokine such as TNF-α and interleukins, inflammatory enzymes including cyclooxygenase-2 and macrophage polarization, thereby attenuating liver inflammation. Silkworm larvae also exhibit anti-oxidative effects by scavenging free radicals, reducing intracellular reactive oxygen species and enhancing the liver's antioxidant defense system. Moreover, silkworms have been reported to decrease the serum alcohol concentration and lipid accumulation. Understanding the therapeutic properties of silkworm larvae contributes to the development of innovative strategies for liver injury prevention and treatment. Further research is warranted to elucidate the precise signaling pathways involved in the anti-inflammatory and anti-oxidative effects of silkworm larvae, paving the way for potential therapeutic interventions in liver diseases.

Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death

  • Daeun Shim;Jiyeon Han
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.575-583
    • /
    • 2023
  • Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis.

Role of Glutathione Redox System on the T-2 Toxin Tolerance of Pheasant (Phasianus colchicus)

  • Fernye, Csaba;Ancsin, Zsolt;Bocsai, Andrea;Balogh, Krisztian;Mezes, Miklos;Erdelyi, Marta
    • Toxicological Research
    • /
    • 제34권3호
    • /
    • pp.249-257
    • /
    • 2018
  • The purpose of the present study was to evaluate the effects of different dietary concentrations of T-2 toxin on blood plasma protein content, lipid peroxidation and glutathione redox system of pheasant (Phasianus colchicus). A total of 320 one-day-old female pheasants were randomly assigned to four treatment groups fed with a diet contaminated with different concentrations of T-2 toxin (control, 4 mg/kg, 8 mg/kg and 16 mg/kg). Birds were sacrificed at early (12, 24 and 72 hr) and late (1, 2 and 3 weeks) stages of the experiment to demonstrate the effect of T-2 toxin on lipid peroxidation and glutathione redox status in different tissues. Feed refusal and impaired growth were observed with dose dependent manner. Lipid-peroxidation was not induced in the liver, while the glutathione redox system was activated partly in the liver, but primarily in the blood plasma. Glutathione peroxidase activity has changed parallel with reduced glutathione concentration in all tissues. Based on our results, pheasants seem to have higher tolerance to T-2 toxin than other avian species, and glutathione redox system might contribute in some extent to this higher tolerance, in particular against free-radical mediated oxidative damage of tissues, such as liver.

Genistein과 Daidzein 급여가 제2형 당뇨동물모델의 적혈구와 조직 중의 항산화방어계에 미치는 영향 (Effect of Genistein and Daidzein on Antioxidant Defense System in C57BL/KsJ-db/db Mice)

  • 박선애;김명주;장주연;최명숙;여지영;이미경
    • 한국식품영양과학회지
    • /
    • 제35권9호
    • /
    • pp.1159-1165
    • /
    • 2006
  • 제2형 당뇨 동물모델(C57BL/KsJ-db/db)을 대상으로 대두 이소플라본의 주성분인 genistein과 daidzein의 항산화효능을 검증하고자 5주령의 수컷 C57BL/KsJ-db/db 마우스와 그의 이형접합체인 C57BL/KsJ-db/+ 마우스를 2주간 환경에 적응시킨 후 비당뇨군(db/+), 당뇨대조군(db/db), genistein 급여군(db/db-genistein), daidzein 급여군(db/db- daidzein)으로 나누어 6주간 사육하였다. 실험동물의 간, 부고환지방과 신주변지방의 조직무게는 당뇨군(db/db)이 비당뇨군(db/+)에 비해 유의적으로 높았으나, 심장무게는 유의적으로 낮았다. Genistein과 daidzein 급여는 장기무게 변화에 영향을 미치지 않았다. 적혈구의 SOD와 CAT활성은 혈당과 양의 상관성을 보였으나 GSH-Px활성은 음의 상관성을 나타내었다. 따라서 SOD와 CAT활성은 db/db군이 db/+군에 비해 유의적으로 높은 반면, GSH-Px 활성은 유의적으로 낮았다. Genistein과 daidzein 급여로 db/db군의 증가된 CAT활성은 감소되었으며 GSH-Px활성은 높게 나타났다. 적혈구의 GSH함량은 당뇨군들이 비당뇨군에 비해 유의적으로 높았으나 genistein과 daidzein에 의한 영향은 관찰되지 않았다. 간, 신장 및 심장조직 내 SOD활성은 유의적인 변화가 없었으나 간조직 중 CAT와 GSH-Px활성과 신장조직 중의 GSH-Px활성은 db/db군이 db/+군에 비하여 유의적으로 높게 나타난 반면 신장조직 중의 CAT활성과 심장조직 중의 CAT와 GSH-Px활성은 낮았다. 그러나 genistein과 daidzein 급여는 고혈당으로 인한 조직 내 CAT와 GSH- Px활성을 유의적으로 개선하였다. 적혈구를 비롯하여 모든 조직 내 지질과산화물 함량은 db/db군이 db/+군에 비하여 유의적으로 높았으나 genistein과 daidzein 급여로 간, 신장과 심장조직 중의 지질과산화물 생성이 유의적으로 억제되었다. 이와 같이 genistein과 daidzein은 제2형 당뇨동물에서 고혈당으로 야기되는 적혈구와 조직 내 항산화효소 변화를 완화하고 간, 신장 및 심장조직의 지질과산화물을 낮추는 것으로 관찰됨으로써 이들의 항산화작용을 통한 당뇨 합병증을 예방할 것으로 사료된다.

Protective Effect of a 43 kD Protein from the Leaves of the Herb, Cajanus indicus L on Chloroform Induced Hepatic-disorder

  • Ghosh, Ayantika;Sarkar, Kasturi;Sil, Parames C.
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.197-207
    • /
    • 2006
  • Cajanus indicus is a herb with medicinal properties and is traditionally used to treat various forms of liver disorders. Present study aimed to evaluate the effect of a 43 kD protein isolated from the leaves of this herb against chloroform induced hepatotoxicity. Male albino mice were intraperitoneally treated with 2mg/kg body weight of the protein for 5 days followed by oral application of chloroform (0.75ml/kg body weight) for 2 days. Different biochemical parameters related to physiology and pathophysiology of liver, such as, serum glutamate pyruvate transaminase and alkaline phosphatase were determined in the murine sera under various experimental conditions. Direct antioxidant role of the protein was also determined from its reaction with Diphenyl picryl hydraxyl radical, superoxide radical and hydrogen peroxide. To find out the mode of action of this protein against chloroform induced liver damage, levels of antioxidant enzymes catalase, superoxide dismutase and glutathione-S-transferase were measured from liver homogenates. Peroxidation of membrane lipids both in vivo and in vitro were also measured as malonaldialdehyde. Finally, histopathological analyses were done from liver sections of control, toxin treated and protein pre- and post-treated (along with the toxin) mice. Levels of serum glutamate pyruvate transaminase and alkaline phosphatase, which showed an elevation in chloroform induced hepatic damage, were brought down near to the normal levels with the protein pretreatment. On the contrary, the levels of anti-oxidant enzymes such as catalase, superoxide dismutase and glutathione-S-transferase that had gone down in mice orally fed with chloroform were significantly elevated in protein pretreated ones. Besides, chloroform induced lipid peroxidation was effectively reduced by protein treatment both in vivo and in vitro. In cell free system the protein effectively quenched diphenyl picryl hydrazyl radical and superoxide radical, though it could not catalyse the breakdown of hydrogen peroxide. Post treatment with the protein for 3 days after 2 days of chloroform administration showed similar results. Histopathological studies indicated that chloroform induced extensive tissue damage was less severe in the mice livers treated with the 43 kD protein prior and post to the toxin administration. Results from all these data suggest that the protein possesses both preventive and curative role against chloroform induced hepatotoxicity and probably acts by an anti-oxidative defense mechanism.

Antioxidant and hepatoprotective effects of Korean ginseng extract GS-KG9 in a D-galactosamine-induced liver damage animal model

  • Jo, Yun Ho;Lee, Hwan;Oh, Myeong Hwan;Lee, Gyeong Hee;Lee, You Jin;Lee, Ji Sun;Kim, Min Jung;Kim, Won Yong;Kim, Jin Seong;Yoo, Dae Seok;Cho, Sang Won;Cha, Seon Woo;Pyo, Mi Kyung
    • Nutrition Research and Practice
    • /
    • 제14권4호
    • /
    • pp.334-351
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: This study was designed to investigate the improvement effect of white ginseng extract (GS-KG9) on D-galactosamine (Ga1N)-induced oxidative stress and liver injury. SUBJECTS/METHODS: Sixty Sprague-Dawley rats were divided into 6 groups. Rats were orally administrated with GS-KG9 (300, 500, or 700 mg/kg) or silymarin (25 mg/kg) for 2 weeks. The rats of the GS-KG9- and silymarin-treated groups and a control group were then intraperitoneally injected Ga1N at a concentration of 650 mg/kg for 4 days. To investigate the protective effect of GS-KG9 against GalN-induced liver injury, blood liver function indicators, anti-oxidative stress indicators, and histopathological features were analyzed. RESULTS: Serum biochemical analysis indicated that GS-KG9 ameliorated the elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in GalN-treated rats. The hepatoprotective effects of GS-KG9 involved enhancing components of the hepatic antioxidant defense system, including glutathione, glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). In addition, GS-KG9 treatment inhibited reactive oxygen species (ROS) production induced by GalN treatment in hepatocytes and significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins, which are antioxidant proteins. In particular, by histological analyses bases on hematoxylin and eosin, Masson's trichrome, α-smooth muscle actin, and transforming growth factor-β1 staining, we determined that the administration of 500 mg/kg GS-KG9 inhibited hepatic inflammation and fibrosis due to the excessive accumulation of collagen. CONCLUSIONS: These findings demonstrate that GS-KG9 improves GalN-induced liver inflammation, necrosis, and fibrosis by attenuating oxidative stress. Therefore, GS-KG9 may be considered a useful candidate in the development of a natural preventive agent against liver injury.

Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현 (Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation)

  • 박지영;백동원;모하마드닐리;김진규
    • 환경생물
    • /
    • 제29권1호
    • /
    • pp.61-67
    • /
    • 2011
  • NAC는 GSH의 전구물질로, thiol기를 포함하는 항산화제 중 하나로 잘 알려져 있으며, 방사선 조사 시 발생하는 생체 내 영향을 감소시켜 생체 손상의 방호 및 회복에 도움을 주는 방사선 방어제로 이용된다. S. cerevisiae에서 항산화제 NAC를 전처리 함에 따라 이온화 방사선 조사에 따른 효모의 세포사멸 방어효과 및 superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx)와 같은 항산화 효소들의 유전자 발현을 분석하여 NAC의 항산화적 효과를 확인하였다. 효모는 다양한 농도의 NAC 전처리 후 다양한 선량의 이온화 방사선에 조사되었으며, 세포생존율은 세포형성단위(CFU)를 계수해 측정되었고, 항산화 효소의 유전자 발현은 real-time PCR수행 후 분석하였다. 우선적으로 효모에 NAC 처리를 위한 적정농도를 확인하였는데, 35 mM 이상의 NAC 농도에서 효모세포의 성장이 억제 되었다. NAC 전처리는 감마선 조사에 의한 세포사멸을 방어하지 않았으며, 100 Gy 방사선 조사는 항산화 효소들의 유전자 발현을 유도하였다. NAC 전처리 후 항산화 효소들의 유전자 발현은NAC의 농도 증가에 따라 감소하였다. 이러한 결과로,NAC의 높은 농도(35 mM 이상)는 효모세포의 성장을 저해하며, NAC는 이온화 방사선 조사에 따른 세포사멸을 방어할 수 없으나, 생체 내에서 활성산소종을 제거 하여 세포를 보호하는 유용한 항산화제임을 알 수 있었다.

구아바잎 추출물이 난소절제 흰쥐에 미치는 항산화 및 혈관보호 효과 (Effect of oral guava leaf extract administration on antioxidant and vasculoprotective activity in ovariectomized rats)

  • 고은정;유아남;김현숙
    • Journal of Nutrition and Health
    • /
    • 제50권3호
    • /
    • pp.236-245
    • /
    • 2017
  • 본 연구에서는 난소절제 흰쥐에 구아바잎 추출물을 8주 동안 경구투여한 결과 난소절제 대조군인 OVX군과 비교시 체중 증가량 및 혈중 유리지방산이 유의적으로 감소된 것을 확인하였다. 또한 간 내 중성지방 농도가 $OVX{\cdot}GL$군과 $OVX{\cdot}GH$군에서 모두 유의적으로 감소하였으며 혈중 항산화 효소인 GPx 농도가 유의적으로 증가하였다. 간 내 항산화 효소 및 eNOS의 mRNA 발현 정도를 측정한 결과 OVX군에 비해 구아바잎 추출물 급여군인 $OVX{\cdot}GL$군과 $OVX{\cdot}GH$군에서 모두 Nrf2 및 CAT의 mRNA 발현 정도가 유의적으로 증가하였으며 eNOS또한 $OVX{\cdot}GH$군에서 유의적으로 증가함을 확인할 수 있었다. 따라서 본 연구의 결과를 종합해 볼 때 구아바잎 추출물 경구투여는 항산화 효소의 활성을 증가시키고 혈관내피세포의 기능을 향상시킴으로써 폐경 후 나타날 수 있는 혈관질환과 산화스트레스로 인한 대사적 장애 개선에 도움이 될 것으로 사료된다.