• Title/Summary/Keyword: Antimicrobial composite film

Search Result 16, Processing Time 0.022 seconds

Antimicrobial Properties of Wheat Gluten-Chitosan Composite Film in Intermediate-Moisture Food Systems

  • Park, Sang-Kyu;Bae, Dong-Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.133-137
    • /
    • 2006
  • Wheat gluten-chitosan composite film (WGCCF) can prevent moisture migration and enhance the antimicrobial properties of gluten in intermediate-moisture foods like sandwiches. To mimic the structure of actual sandwich-type products we developed multi-layer food models, where moisture content and water activity differ. Water activity gradients direct moisture migration and therefore determine product characteristics and product stability. A 10% wheat gluten film-forming solution was mixed with chitosan film-forming solution (0-3%, w/w) and evaporated to generate WGCCF. Addition of 3% chitosan enhanced the mechanical properties of the film composite, lowered its water vapor permeability, and improved its ability to protect against both, Streptococcus faecalis and Escherichia coli, in a 24 hr sandwich test (reduction of 1.3 and 2.7 log cycles, respectively, compared to controls). Best barrier and antimicrobial performance was found for 3% chitosan WGCCF at pH 5.1. Film of this type may find application as barrier film for intermediate-moisture foods.

Preparation and Characterization of Antimicrobial Composite Film Containing Calcined Oyster Shell Powder (굴 패각 분말을 함유한 항균성 복합 필름의 제조 및 특성 연구)

  • Park, Kitae;Kambiz, Sadeghi;Seo, Jongchul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In this study, ethylene vinyl acetate (EVA) and low density polyethylene (LDPE) composite films (EVA/LDPE-OSP) containing calcined oyster shell powder (OSP) were prepared using twin-screw extruder as an antimicrobial packaging material. The OSP composite was initially prepared and then incorporated into an EVA/LDPE blend at different ratios (0, 1, 3 and 5%) to develop the EVA/LDPE-OSP composite films. The as-prepared EVA/LDPE-OSP composites films were evaluated using FT-IR, DSC, TGA, OTR, WVTR, SEM and UTM as well as antimicrobial activity was examined using JIS Z 2801:2000 standard. OPS endowed the antimicrobial potency to the composite films against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. In addition, the incorporation of OSP remarkably enhanced the thermal stability. OSP as a natural biocidal agent can be used as a multifunctional additive in packaging industry such as improving the thermomechanical properties and preventing the microbial contamination of packaged products.

Preparation and Antimicrobial of Zinc Calcium Alginate Films according to Concentration (농도에 따른 알긴산 아연칼슘 필름의 제조 및 항균성)

  • Seo, Hye-Jin;Jun, So-Yoon;Lee, Woo-Seung;Park, Jae-Hoon;Son, Tae-Won
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.580-587
    • /
    • 2014
  • Composite films of zinc calcium alginate were prepared by a film maker from 7 wt% sodium alginate solution and then they solidified into 3, 5 wt% content $ZnCl_2$, $CaCl_2$ solution followed by washing and drying at room temperature. The characteristics were measured with several methods (antimicrobial activity, water solubility, swelling ratio and viscosity, SEM, EDS) and the film properties were investigated. Composite films of zinc calcium alginate showed an increase in the water resistance by increasing $ZnCl_2$ and $CaCl_2$ content and the antimicrobial test showed that the calcium alginate as well as zinc alginate films result in excellent antimicrobial activity in the two strains, Staphylococcus and Escherichia coli. The results show the possible improvement of the physical properties of composite films.

A Study on the Functionality and Stability of LDPE-Nano ZnO Composite Film (LDPE-나노 ZnO 복합필름의 기능성 및 재질안정성 평가)

  • Lee, Wooseok;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In this work, nano ZnO was introduced into low density poly ethylene (LDPE) composites films with various contents (0, 0.5, 1.0, 3.0 and 5.0 wt%) by melt-extrusion. Their basic properties such as crystallinity, chemical bonds and surface morphology were examined by XRD, FTIR and SEM. XRD patterns and FTIR peaks intensity were increased in proportion to the ZnO contents. SEM images showed well dispersed nano ZnO in LDPE composite films. Antimicrobial functionality of LDPE-nano ZnO composite films was also studied and the presence of nano ZnO resulted in significant improvement of antimicrobial functionality compared to the pure LDPE film. To evaluate influence of nano ZnO on LDPE properties required as packaging material, thermal, mechanical, gas barrier and optical properties of LDPE-nano ZnO composite films were characterized with various analytical techniques including TGA, UTM, OTR, WVTR and UV-Vis spectroscopy. As a result, except optical and mechanical properties of LDPE, no significant effects were found in other properties. Opacity of pure LDPE was greatly increased with increasing concentration of nano ZnO and tensile strength was also improved at 0.5wt% ZnO content.

Application of PLA/PBAT Composite Films Containing Calcined Oyster Shell Powder for Antimicrobial Packaging (소성 처리된 굴 패각을 활용한 PLA/PBAT 복합필름의 항균 포장재 적용 연구)

  • Yena Oh;Kitae Park;Jongchul Seo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2023
  • In this study, poly(lactic acid) (PLA) and Poly(butylene-adipate-co-terephthalate) (PBAT) composite films containing calcined oyster shell powder (OSP) were evaluated for the applicability of antimicrobial packaging. PLA/PBAT-OSP composite films were prepared using twin-screw extruder. The OSP composite was incorporated into PLA/PBAT blend with different ratios (0, 1, 3, 5 and 10%) and the effect of OSP in the PLA/PBAT matrix was evaluated. The PLA/PBAT-OSP composite films were evaluated for properties using FT-IR, SEM, TGA, DSC, UTM, UV-vis, and Contact angle, as well as antimicrobial property was examined according to ISO 22196 - Antimicrobial Plastic Test. As OSP was added, it showed high antimicrobial activities for both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. On the other hand, it was found that mechanical properties decreased as OSP was added. For the application of PLA/PBAT-OSP composite films as an antimicrobial packaging material, it is necessary to improve the dispersibility of OSP in the PLA/PBAT composite films and their physical properties at the same time.

Facile Synthesis of Bio-Composite Films Obtained from Sugarcane Bagasse and Cardboard Waste

  • Satish Kumar Singh;Sweety Verma;Himanshu Gupta;Avneesh Kumar Gehlaut;Suantak Kamsonlian;Surya Narain Lal;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.584-590
    • /
    • 2023
  • In this study, we focus on the recycling of cardboard waste and sugarcane bagasse (SCB) for the preparation of carboxymethyl cellulose (CMC) and its conversion into a biodegradable film. Sodium alginate (SA) was added to form a biodegradable composite film. SA was used to increase film permeability. Glycerol, which is a plasticizer, was used to increase the tensile strength (TS) and film expansion. To characterize the CMC, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy were used. The addition of olive oil to the CMC-SA matrix highlighted its antimicrobial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). A slight decrease in tensile strength was observed with the addition of olive oil (OO), which improved the functional properties of the control films as well as lowered moisture content and water solubility. But considering all other factors, the composite films obtained from sugarcane bagasse and cardboard waste incorporated with olive oil are suitable for applications in the field of food packaging.

Preparation of Polyurushiol (PUOH) Using Urushiol and Property of LDPE / PUOH Composite Films (우루시올을 활용한 폴리우루시올(PUOH)제조 및 LDPE/PUOH 복합필름 특성에 관한 연구)

  • Kim, Dowan;Kim, Insoo;Seo, Jongchul;Seo, Jungsang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.546-553
    • /
    • 2012
  • Urushiol extracted from lacquer tree exhibits good thermal stabilities as well as antimicrobial andantioxidant properties. However, it has been known that the urushiol derivates bring out allergy. In this study, polyurushiol (PUOH) powders were successfully synthesized for the safe and convenient handling of allergic urushiol. First, the as-synthesized PUOH was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analyzer (TGA), antioxidant test and antimicrobial test. And then, six different LDPE/PUOH composite films were prepared via a twin screw extruder system and investigated their feasibility to use as active packaging materials. Their chemical structures, morphology, thermal optical and antimicrobial properties of the LDPE/PUOH composite films were investigated as a function of PUOH contents. FTIR and SEM results showed that LDPE/PUOH composite films have a weak interfacial interaction and poor dispersion with a high PUOH loading. The thermal properties increased up to 3 wt% as the content of PUOH increases. Compared to the pure LDPE films, LDPE/PUOH composite films are more effective in the UV absorbance and antibacterial activity against E. coli. To maximize the performance of LDPE/PUOH compositefilms as the packaging materials, further researches are required to enhance the dispersion of PUOH powders in the LDPE matrix.

UV Barrier and Antimicrobial Activity of Agar-based Composite Films Incorporated with ZnO Nanoparticles and Grapefruit Seeds Extract (ZnO 나노입자와 자몽씨추출물을 첨가한 아가복합필름의 자외선차단 및 항균특성)

  • Kim, Yeon Ho;Bang, Yeong-Ju;Yoon, Ki Sun;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.69-77
    • /
    • 2019
  • Agar-based nanocomposite films were prepared by incorporation of zinc oxide nanoparticles (ZnONP) and grapefruit seed extract (GSE). The composite films were characterized using FT-IR, UV-visible spectroscopy and thermalgravimetric analysis (TGA). The composite films showed light absorption peaks at 220 and 380 nm, characteristic for GSE and ZnONP, respectively. The UV-light transmittance of the agar film was markedly reduced from 54.4 ± 1.3% to 5.8 ± 2.5% with little sacrifice of transparency when 3 wt% ZnONP and 5 wt% GSE were added. The mechanical and water vapor barrier properties increased slightly though they were not significant statistically by the addition of ZnONP and GSE. The nanocomposite films showed stronger antibacterial activity against L. monocytogenes than E. coli O157: H7 and the antibacterial activity was affected by bacterial types as well as concentrations of ZnONP and GSE. The nano-composite film incorporated with 3 wt% of ZnONP and 5 wt% of GSE exhibited strong antibacterial activity against Listeria monocytogenes and E. coli O157: H7. The results indicate that 3 wt% of ZnONP and 5 wt% of GSE are the optimal concentrations for producing functional agar/ZnONP/GSE composite films.

Designed of rPP/d2w®/ZnO Nanocomposite Flexible Film for Food Packaging and Characterization on Mechanical and Antimicrobial Properties (산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구)

  • Lee, Jin-kyoung;Gil, Bo-min;Lee, Dong-jin;Lee, Ik-mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, pro-oxidant($d2w^{(R)}$) and rPP/ZnO nanocomposite flexible films for food packaging were prepared, and their mechanical and antimicrobial properties were investigated. As a result, the carbonyl index and hydroxyl index increased with exposured time to heat and UV rays. Surface analysis showed that the addition of zinc oxide improved the dispersibility and compatibility of the polymer, so that the surface of the composite film was smooth and the zinc oxide particles were smaller than the compared film. And it kept the physical properties by heat and UV ray blocking effect, and it worked to reduce decomposition. In the antimicrobial activity test, the microbial reduction rate was 3 logs or more at the use concentration of zinc oxide. The tensile strength was increased and the elongation was decreased. Oxidative degradability of multi-layered film in UV exposured for 72 hours, the molecular weight of the film decreased by 75.6%, 1,294 g/mol Mn and 5,920 g/mol Mw. In the safety analysis of food packaging materials, we obtained that are in standard of polypropylene, a food contact material of domestic law.

Preparation of Carrageenan-based Antimicrobial Films Incorporated With Sulfur Nanoparticles

  • Saedi, Shahab;Shokri, Mastaneh;Rhim, Jong-Whan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.3
    • /
    • pp.125-131
    • /
    • 2020
  • Carrageenan-based functional films were prepared by adding two different types of sulfur nanoparticles (SNP) synthesized from sodium thiosulfate (SNPSTS) and elemental sulfur (SNPES). The films were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), and thermal gravimetric analysis (TGA). Also, film properties such as UV-visible light transmittance, water contact angle (WCA), water vapor permeability (WVP), mechanical properties, and antibacterial activity were evaluated. SNPs were uniformly dispersed in the carrageenan matrix to form flexible films. The addition of SNP significantly increased the film properties such as water vapor barrier and surface hydrophobicity but did not affect the mechanical properties. The carrageenan/SNP composite film showed some antibacterial activity against foodborne pathogenic bacteria, L. monocytogenes and E. coli.