DOI QR코드

DOI QR Code

Preparation and Characterization of Antimicrobial Composite Film Containing Calcined Oyster Shell Powder

굴 패각 분말을 함유한 항균성 복합 필름의 제조 및 특성 연구

  • Received : 2021.04.14
  • Accepted : 2021.04.23
  • Published : 2021.04.29

Abstract

In this study, ethylene vinyl acetate (EVA) and low density polyethylene (LDPE) composite films (EVA/LDPE-OSP) containing calcined oyster shell powder (OSP) were prepared using twin-screw extruder as an antimicrobial packaging material. The OSP composite was initially prepared and then incorporated into an EVA/LDPE blend at different ratios (0, 1, 3 and 5%) to develop the EVA/LDPE-OSP composite films. The as-prepared EVA/LDPE-OSP composites films were evaluated using FT-IR, DSC, TGA, OTR, WVTR, SEM and UTM as well as antimicrobial activity was examined using JIS Z 2801:2000 standard. OPS endowed the antimicrobial potency to the composite films against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. In addition, the incorporation of OSP remarkably enhanced the thermal stability. OSP as a natural biocidal agent can be used as a multifunctional additive in packaging industry such as improving the thermomechanical properties and preventing the microbial contamination of packaged products.

본 연구에서는 EVA/LDPE 복합소재에 OSP의 함량비를 달리한 EVA/LDPE-OSP 복합 필름을 이축압출기로 제조하였다. 제조한 복합 필름의 액티브 포장 소재로의 적용가능성을 평가하기 위해 FT-IR, DSC, TGA, OTR, WVTR, SEM, UTM 및 항균성을 분석한 결과 다음과 같은 결론을 도출하였다. EVA/LDPE-OSP 복합 필름 내 OSP 첨가는 열 안전성을 개선할 수 있었으며, OSP 함량이 높아질수록 항균성은 증가하였다. 그러나, OSP의 응집, EVA/LDPE 폴리머와 OSP 사이의 낮은 상호작용 등의 이유로 OSP의 첨가는 상대적으로 낮은 항균성과 기계적 물성, 차단특성의 저하를 확인할 수 있었다. 결론적으로 EVA/LDPE-OSP 복합 필름은 미생물에 의해 발생할 수 있는 식품의 부패를 방지하는 측면에서 긍정적인 효과를 가져올 수 있지만, 포장재로써 적용을 위해 무기입자인 OSP의 입자크기 조절, 표면처리, 상용화제 도입 등을 통한 분산성을 향상시키는 것이 필요하며 이를 통한 항균성 증진 및 필름의 물성 개선에 관한 추가 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Shanky, B. 2013. Minimal processing and preservation of fruits and vegetables by active packaging. Int. J. Herb. Med, 1(2): 131-138.
  2. Kumar, S., Boro, J. C., Ray, D., Mukherjee, A. and Dutta, J. 2019. Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon, 5(6): e01867. https://doi.org/10.1016/j.heliyon.2019.e01867
  3. GilakHakimabadi, S., Ehsani, M., Khonakdar, H. A., Ghaffari, M. and Jafari, S. H. 2019. Controlled-release of ferulic acid from active packaging based on LDPE/EVA blend: Experimental and modeling. Food packag. Shelf Life, 22: 100392. https://doi.org/10.1016/j.fpsl.2019.100392
  4. Khonakdar, H., Jafari, S., Yavari, A., Asadinezhad, A. and Wagenknecht, U. 2005. Rheology, morphology and estimation of interfacial tension of LDPE/EVA and HDPE/EVA blends. Polym. Bull, 54(1): 75-84. https://doi.org/10.1007/s00289-005-0365-6
  5. Khonakdar, H., Wagenknecht, U., Jafari, S., Hassler, R. and Eslami, H. 2004. Dynamic mechanical properties and morphology of polyethylene/ethylene vinyl acetate copolymer blends. Adv. Polym. Technol, 23(4): 307-315. https://doi.org/10.1002/adv.20019
  6. Suppakul, P., Sonneveld, K., Bigger, S. W. and Miltz, J. 2011. Loss of AM additives from antimicrobial films during storage. J. Food. Eng, 105(2): 270-276. https://doi.org/10.1016/j.jfoodeng.2011.02.031
  7. Olyveira, G. M., Costa, L. M. M., da Carvalho, A. J. F., Basmaji, P. and Pessan, L. A. 2011. Novel LDPE/EVA nanocomposites with silver/titanium dioxide particles for biomedical applications. Mater. Sci. Eng. B. 1(4B): 516.
  8. Mousavi, S., Aghili, A., Hashemi, S., Goudarzian, N., Bakhoda, Z. and Baseri, S. 2016. Improved morphology and properties of nanocomposites, linear low density polyethylene, ethyleneco-vinyl acetate and nano clay particles by electron beam. Polym. from Renew. Resour, 7(4): 135-153. https://doi.org/10.1177/204124791600700402
  9. Lee, H., Park, D. and Woo, D. 2009. A Study on phsicochemical and calcination processed characteristic of oyster shell. JKAIS, 10(12): 3971-3976.
  10. Park, K., Sadeghi, K., Thanakkasaranee, S., Park, Y. I., Park, J., Nam, K. H., Han, H. and Seo, J. 2021. Effects of calcination temperature on morphological and crystallographic properties of oyster shell as biocidal agent. Int. J. Appl. Ceram. Technol, 18(2): 302-311. https://doi.org/10.1111/ijac.13647
  11. Wu, C.-S., Wu, D.-Y. and Wang, S.-S. 2020. Preparation, characterization, and functionality of bio-based polyhydroxyalkanoate and renewable natural fiber with waste oyster shell composites. Polym. Bull, 1-18.
  12. Hamester, M. R. R., Balzer, P. S. and Becker, D. 2012. Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Mater. Res, 15(2): 204-208. https://doi.org/10.1590/S1516-14392012005000014
  13. Shah, A. U. R., Prabhakar, M., Wang, H. and Song, J. I. 2018. The influence of particle size and surface treatment of filler on the properties of oyster shell powder filled polypropylene composites. Polym. Compos, 39(7): 2420-2430. https://doi.org/10.1002/pc.24225
  14. Liu, C.-H., Lee, H.-T., Tsou, C.-H., Wang, C.-C., Gu, J.-H. and Suen, M.-C. 2020. Preparation and characterization of biodegradable polyurethane composites containing oyster shell powder. Polym. Bull, 77(6): 3325-3347. https://doi.org/10.1007/s00289-019-02906-9
  15. Tsou, C.-H., Wu, C.-S., Hung, W.-S., De Guzman, M. R., Gao, C., Wang, R.-Y., Chen, J., Wan, N., Peng, Y.-J. and Suen, M.-C. 2019. Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer, 160: 265-271. https://doi.org/10.1016/j.polymer.2018.11.048
  16. Zhang, J., Hereid, J., Hagen, M., Bakirtzis, D., Delichatsios, M. A., Fina, A., Castrovinci, A., Camino, G., Samyn, F. and Bourbigot, S. 2009. Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Saf. J. 44(4): 504-513. https://doi.org/10.1016/j.firesaf.2008.10.005
  17. Dadfar, S. R., Ramazani, S. A. and Dadfar, S. A. 2009. Investigation of oxygen barrier properties of organoclay/HDPE/EVA nanocomposite films prepared using a two?step solution method. Polym. Compos, 30(6): 812-819. https://doi.org/10.1002/pc.20711
  18. Park, C. H., Kim, H. S. and Lee, Y. M. 2014. Surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica. J. Membr. Sci, 24(4): 301-310. https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.301
  19. Yang, X. L., Wang, H. Q., Lv, L., Yuan, S. L., Cai, J. and Zhou, L. Y. (2016). Preparation and Performance Research of New High Toughness EVA Material. Paper presented at the Mater. Sci. Fourm.
  20. Ramirez-Hernandez, A., Aguilar-Flores, C. and Aparicio-Saguilan, A. 2019. Fingerprint analysis of FTIR spectra of polymers containing vinyl acetate. Dyna (Medellin), 86(209): 198-205. https://doi.org/10.15446/dyna.v86n209.77513
  21. Shi, L.-S., Wang, L.-Y. and Wang, Y.-N. 2006. The investigation of argon plasma surface modification to polyethylene: Quantitative ATR-FTIR spectroscopic analysis. Eur. Polym. J, 42(7): 1625-1633. https://doi.org/10.1016/j.eurpolymj.2006.01.007
  22. Namduri, H. and Nasrazadani, S. 2008. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci, 50(9): 2493-2497. https://doi.org/10.1016/j.corsci.2008.06.034
  23. Rujitanapanich, S., Kumpapan, P. and Wanjanoi, P. 2014. Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia, 56: 112-117. https://doi.org/10.1016/j.egypro.2014.07.138
  24. Haurie, L., Fernandez, A. I., Velasco, J. I., Chimenos, J. M., Cuesta, J.-M. L. and Espiell, F. 2007. Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/montmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures. Polym. Degrad. Stab, 92(6): 1082-1087. https://doi.org/10.1016/j.polymdegradstab.2007.02.014
  25. Khonakdar, H. A. 2015. Dynamic mechanical analysis and thermal properties of LLDPE/EVA/modified silica nanocomposites. Compos. B. Eng, 76: 343-353. https://doi.org/10.1016/j.compositesb.2015.02.031
  26. Hong, X., Zheng, Y., Zhang, X. and Wu, X. 2020. Preparation of graphene intercalated magnesium silicate for enhancing the thermal stability and thermal conductivity of ethylen-evinyl acetate copolymer. Polymer. 193: 122332. https://doi.org/10.1016/j.polymer.2020.122332
  27. Moly, K., Radusch, H., Androsh, R., Bhagawan, S. and Thomas, S. 2005. Nonisothermal crystallisation, melting behavior and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends: effects of compatibilisation and dynamic crosslinking. Eur. Polym, J. 41(6): 1410-1419. https://doi.org/10.1016/j.eurpolymj.2004.10.016
  28. Zheng, J., Siegel, R. W. and Toney, C. G. 2003. Polymer crystalline structure and morphology changes in nylon?6/ZnO nanocomposites, J. Polym. Sci. B Polym. Phys. 41(10): 1033-1050. https://doi.org/10.1002/polb.10452
  29. Shen, L. and Chen, Z. 2007. Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci, 62(14): 3748-3755. https://doi.org/10.1016/j.ces.2007.03.041
  30. Thanakkasaranee, S., Sadeghi, K., Lim, I.-J. and Seo, J. 2020. Effects of incorporating calcined corals as natural antimicrobial agent into active packaging system for milk storage. Mater. Sci. Eng. C. 111: 110781. https://doi.org/10.1016/j.msec.2020.110781
  31. Lu, N., Lu, X., Jin, X. and Lu, C. 2007. Preparation and characterization of UV-curable ZnO/polymer nanocomposite films. Polym. Int, 56(1): 138-143. https://doi.org/10.1002/pi.2126
  32. Chen, Y. 2014. Investigations of environmental stress cracking resistance of HDPE/EVA and LDPE/EVA blends. J. Appl. Polym. Sci, 131(4).
  33. Sawai, J. 2003. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods, 54(2): 177-182. https://doi.org/10.1016/S0167-7012(03)00037-X
  34. Sawai, J., Kawada, E., Kanou, F., Igarashi, H., Hashimoto, A., Kokugan, T. and Shimizu, M. 1996. Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Japan, 29(4): 627-633. https://doi.org/10.1252/jcej.29.627
  35. Jokar, M., Rahman, R. A., Ibrahim, N. A., Abdullah, L. C. and Tan, C. P. 2012. Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film. Food Bioproc. Tech, 5(2): 719-728. https://doi.org/10.1007/s11947-010-0329-1
  36. Menazea, A. and Awwad, N. S. 2020. Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. J. Mater. Res. Technol, 9(4): 9434-9441. https://doi.org/10.1016/j.jmrt.2020.05.103