DOI QR코드

DOI QR Code

UV Barrier and Antimicrobial Activity of Agar-based Composite Films Incorporated with ZnO Nanoparticles and Grapefruit Seeds Extract

ZnO 나노입자와 자몽씨추출물을 첨가한 아가복합필름의 자외선차단 및 항균특성

  • Kim, Yeon Ho (Department of Food and Nutrition, Kyung Hee University) ;
  • Bang, Yeong-Ju (Department of Food and Nutrition, Kyung Hee University) ;
  • Yoon, Ki Sun (Department of Food and Nutrition, Kyung Hee University) ;
  • Rhim, Jong-Whan (Department of Food and Nutrition, Kyung Hee University)
  • 김연호 (경희대학교 식품영양학과) ;
  • 방영주 (경희대학교 식품영양학과) ;
  • 윤기선 (경희대학교 식품영양학과) ;
  • 임종환 (경희대학교 식품영양학과)
  • Received : 2019.09.02
  • Accepted : 2019.11.04
  • Published : 2019.12.31

Abstract

Agar-based nanocomposite films were prepared by incorporation of zinc oxide nanoparticles (ZnONP) and grapefruit seed extract (GSE). The composite films were characterized using FT-IR, UV-visible spectroscopy and thermalgravimetric analysis (TGA). The composite films showed light absorption peaks at 220 and 380 nm, characteristic for GSE and ZnONP, respectively. The UV-light transmittance of the agar film was markedly reduced from 54.4 ± 1.3% to 5.8 ± 2.5% with little sacrifice of transparency when 3 wt% ZnONP and 5 wt% GSE were added. The mechanical and water vapor barrier properties increased slightly though they were not significant statistically by the addition of ZnONP and GSE. The nanocomposite films showed stronger antibacterial activity against L. monocytogenes than E. coli O157: H7 and the antibacterial activity was affected by bacterial types as well as concentrations of ZnONP and GSE. The nano-composite film incorporated with 3 wt% of ZnONP and 5 wt% of GSE exhibited strong antibacterial activity against Listeria monocytogenes and E. coli O157: H7. The results indicate that 3 wt% of ZnONP and 5 wt% of GSE are the optimal concentrations for producing functional agar/ZnONP/GSE composite films.

자몽씨추출물(GSE)과 ZnONP을 아가필름에 동시에 첨가하여 다기능성 복합필름을제조하였다. Agar/GSE/ZnONP복합필름은 특히 자외선차단성과 항균성에 대한 시너지 효과를 나타냈다. 광 차단성은 자외선 파장범위인 280 nm와 가시광선 파장범위인 660 nm에서 유의적인 차이를 보이며 크게 나타났다. 자외선차단성은 agar/GSE와 agar/ZnONP 필름에 비해 agar/ZnONP3%/GSE5% 필름에서의 크게 상승하여 GSE와 ZnONP의 시너지 효과를 확인할 수 있었다. 항균성으로는 그람양성균인 L. monocytogenes와 그람음성균인 E. coli O157: H7 모두 agar/ZnONP3%/GSE5% 필름에서 강한 항균성 및 시너지 효과가 있었다. 자외선 차단성과 항균성은 포장식품의 안전성을 확보하고 유통기한을 연장시키는데 필수적인 특성으로 agar/ZnONP3%/GSE5% 필름은 식품의 유통기한 연장과 식품의 안전성을 위한 포장필름으로 활용 가치가 높을 것으로 사료된다.

Keywords

References

  1. Kim, S. 2018. The consumer behavior survey for food. Proceedings of Korea Rural Economic Institute Conference, 30-37.
  2. Kumar, S., Boro, J.C., Ray, D., Mukherjee, A. and Dutta, J. 2019. Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon. 5: e01867. https://doi.org/10.1016/j.heliyon.2019.e01867
  3. Shanky, B. 2013. Minimal processing and preservation of fruits and vegetables by active packaging. Int. J. Herb. Med. 1: 131-138.
  4. Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N. and Debevere, J. 1999. Developments in the active packaging of foods. Trends. Food Sci. Technol. 10: 77-86. https://doi.org/10.1016/S0924-2244(99)00032-1
  5. Rooney, M. 1995. Active packaging in polymer films. In: Anonymous Active food packaging, Springer. 74-110.
  6. Shankar, S., Teng, X. and Rhim, J.W. 2014. Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr. Polym. 114: 484-492. https://doi.org/10.1016/j.carbpol.2014.08.036
  7. Rhim, J.W., Hong, S. and Ha, C. 2009. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Sci. Technol. 42: 612-617. https://doi.org/10.1016/j.lwt.2008.02.015
  8. Shankar, S., Teng, X., Li, G. and Rhim, J.W. 2015. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloid. 45: 264-271. https://doi.org/10.1016/j.foodhyd.2014.12.001
  9. Rhim, J.W., Hong, S., Park, H. and Ng, P.K. 2006. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem. 54: 5814-5822. https://doi.org/10.1021/jf060658h
  10. Kanmani, P. and Rhim, J.W. 2014. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem. 148: 162-169. https://doi.org/10.1016/j.foodchem.2013.10.047
  11. Shankar, S., Jaiswal, L., Selvakannan, P., Ham, K. and Rhim, J.W. 2016. Gelatin-based dissolvable antibacterial films reinforced with metallic nanoparticles. RSC Adv. 6: 67340-67352. https://doi.org/10.1039/C6RA10620J
  12. Gimenez, B., De Lacey, A.L., Perez-Santin, E., Lopez-Caballero, M. and Montero, P. 2013. Release of active compounds from agar and agar-gelatin films with green tea extract. Food Hydrocolloid. 30: 264-271. https://doi.org/10.1016/j.foodhyd.2012.05.014
  13. Shankar, S. and Rhim, J.W. 2015. Amino acid-mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/ silver nanoparticles composite films. Carbohydr. Polym. 130: 353-363. https://doi.org/10.1016/j.carbpol.2015.05.018
  14. Shankar, S., Teng, X. and Rhim, J.W. 2014. Effects of concentration of ZnO nanoparticles on mechanical, optical, thermal, and antimicrobial properties of gelatin/ZnO nanocomposite films. Korean J. Packag. Sci. Tech. 20: 41-49.
  15. Roy, S. and Rhim, J.W. 2019. Melanin-Mediated Synthesis of Copper Oxide Nanoparticles and Preparation of Functional Agar/CuO NP Nanocomposite Films. J. Nanomater. 2019. https://doi.org/10.1155/2019/2840517.
  16. Roy, S. and Rhim, J.W. 2019. Preparation of carrageenanbased functional nanocomposite films incorporated with melanin nanoparticles. Colloid Surface B. 176: 317-324. https://doi.org/10.1016/j.colsurfb.2019.01.023
  17. Shankar, S. and Rhim, J.W. 2018. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll. 82: 116-123. https://doi.org/10.1016/j.foodhyd.2018.03.054
  18. Wang, L., Shankar, S. and Rhim, J.W. 2017. Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocoll. 63: 201-208. https://doi.org/10.1016/j.foodhyd.2016.08.041
  19. Trandafilovic, L.V., Bozanic, D.K., Dimitrijevic-Brankovic, S., Luyt, A. and Djokovic, V. 2012. Fabrication and antibacterial properties of ZnO-alginate nanocomposites. Carbohydr. Polym. 88: 263-269. https://doi.org/10.1016/j.carbpol.2011.12.005
  20. MFDS. 2019. Korean Food Standards Codex. http://www. foodsafetykorea.go.kr/foodcode/04_03.jsp?idx=199. Aceessed 23. Aug. 2019
  21. Nafchi, A.M., Alias, A.K., Mahmud, S. and Robal, M. 2012. Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J. Food Eng. 113: 511-519. https://doi.org/10.1016/j.jfoodeng.2012.07.017
  22. Li, X., Feng, X., Yang, S., Fu, G., Wang, T. and Su, Z. 2010. Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydr. Polym. 79: 493-499. https://doi.org/10.1016/j.carbpol.2009.07.011
  23. Tan, Y., Lim, S., Tay, B., Lee, M. and Thian, E. 2015. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology. Mater. Res. Bull. 69: 142-146. https://doi.org/10.1016/j.materresbull.2014.11.041
  24. Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M.J. and Khaksar, R. 2013. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr. Polym. 98: 1117-1126. https://doi.org/10.1016/j.carbpol.2013.07.026
  25. Reagor, L., Gusman, J., McCoy, L., Carino, E. and Heggers, J.P. 2002. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: I. An in vitro agar assay. J. Altern. Complementary Med. 8: 325-332. https://doi.org/10.1089/10755530260128014
  26. Tirillini, B. 2000. Grapefruit: the last decade acquisitions. Fitoterapia. 71: S29-S37. https://doi.org/10.1016/S0367-326X(00)00176-3
  27. Heggers, J.P., Cottingham, J., Gusman, J., Reagor, L., McCoy, L., Carino, E., Cox, R. and Zhao, J. 2002. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity. J.Altern. Complementary Med. 8: 333-340. https://doi.org/10.1089/10755530260128023
  28. Cho, S., Seo, I., Choi, J. and Joo, I. 1990. Antimicrobial and antioxidant activity of grapefruit and seed extract on fishery products. Korean J. Fish. Aquat. Sci. 23: 289-296.
  29. Saito, M., Hosoyama, H., Ariga, T., Kataoka, S. and Yamaji, N. 1998. Antiulcer activity of grape seed extract and procyanidins. J. Agric. Food Chem.. 46: 1460-1464. https://doi.org/10.1021/jf9709156
  30. Song, H.Y., Shin, Y.J. and Song, K.B. 2012. Preparation of a barley bran protein-gelatin composite film containing grapefruit seed extract and its application in salmon packaging. J. Food Eng. 113: 541-547. https://doi.org/10.1016/j.jfoodeng.2012.07.010
  31. Xu, W., Qu, W., Huang, K., Guo, F., Yang, J., Zhao, H. and Luo, Y. 2007. Antibacterial effect of grapefruit seed extract on food-borne pathogens and its application in the preservation of minimally processed vegetables. Postharvest Biol. and Technol. 45: 126-133.
  32. Wang, L. and Rhim, J.W. 2016. Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT-Food Sci. 74: 338-345. https://doi.org/10.1016/j.lwt.2016.07.066
  33. Shankar, S. and Rhim, J.W. 2019. Effect of Zn salts and hydrolyzing agents on the morphology and antibacterial activity of zinc oxide nanoparticles. Environ Chem Lett. 17: 1105-1109. https://doi.org/10.1007/s10311-018-00835-z
  34. Shankar, S. and Rhim, J.W. 2016. Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWTFood Sci. 72: 149-156.
  35. Gennadios, A., Weller, C.L. and Gooding, C.H. 1994. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Eng. 21: 395-409. https://doi.org/10.1016/0260-8774(94)90062-0
  36. Kanmani, P. and Rhim, J. 2014. Antimicrobial and physicalmechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydr. Polym. 102: 708-716. https://doi.org/10.1016/j.carbpol.2013.10.099
  37. Kanmani, P. and Rhim, J. 2014. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr. Polym. 106: 190-199. https://doi.org/10.1016/j.carbpol.2014.02.007
  38. Kumar, A., Negi, Y.S., Choudhary, V. and Bhardwaj, N.K. 2014. Effect of modified cellulose nanocrystals on microstructural and mechanical properties of polyvinyl alcohol/ovalbumin biocomposite scaffolds. Mater. Lett. 129: 61-64. https://doi.org/10.1016/j.matlet.2014.05.038
  39. Volery, P., Besson, R. and Schaffer-Lequart, C. 2004. Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J. Agric. Food Chem. 52: 7457-7463. https://doi.org/10.1021/jf040229o
  40. Martucci, J. and Ruseckaite, R. 2010. Three?layer sheets based on gelatin and poly (lactic acid), part 1: Preparation and properties. J. Appl. Polym. Sci. 118: 3102-3110. https://doi.org/10.1002/app.32751
  41. Yang, L. and Paulson, A. 2000. Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Res. Int. 33: 571-578. https://doi.org/10.1016/S0963-9969(00)00093-4
  42. Shankar, S. and Rhim, J.W. 2019. Effect of types of zinc oxide nanoparticles on structural, mechanical and antibacterial properties of poly (lactide)/poly (butylene adipate-coterephthalate) composite films. Food Packaging Shelf. 21: 100327. https://doi.org/10.1016/j.fpsl.2019.100327
  43. Roy, S., Rhim, J.W. and Jaiswal, L. 2019. Bioactive agarbased functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocoll. 93: 156-166. https://doi.org/10.1016/j.foodhyd.2019.02.034
  44. Ionescu, G., Kiehl, R., Wichmann-Kunz, F., Williams, C., Bauml, L. and Levine, S. 1990. Oral citrus seed extract in atopic eczema: In vitro and in vivo studies on intestinal microflora. J. Orthomolecular Med. 5: 155-157.
  45. Cvetnic, Z. and Vladimir-Knezevic, S. 2004. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta. Pharm. 54: 243-250.
  46. Paisoonsin, S., Pornsunthorntawee, O. and Rujiravanit, R. 2013. Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities. Appl. Surf. Sci. 273: 824-835. https://doi.org/10.1016/j.apsusc.2013.03.026
  47. Anitha, S., Brabu, B., Thiruvadigal, D.J., Gopalakrishnan, C. and Natarajan, T. 2012. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr. Polym. 87: 1065-1072. https://doi.org/10.1016/j.carbpol.2011.08.030