• Title/Summary/Keyword: Antibacterial peptide

Search Result 147, Processing Time 0.029 seconds

Isolation and characterization of Bacillus amyloliquefaciens TK3 inhibiting causative bacteria of atrophic rhinitis and fowl typhoid (돼지위축성비염과 가금티푸스 병원균을 저해하는 Bacillus amyloliquefaciens TK3의 분리 및 특성 조사)

  • Jung, Taeck-Kyung;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.177-180
    • /
    • 2015
  • For prevention of atrophic rhinitis of swine by Bordetella bronchiseptica and fowl typhoid by Salmonella gallinarum, bacterial strains showing antimicrobial activity against those pathogenic bacteria were isolated from various samples collected at animal farms. Among 372 bacterial isolates strain TK3 showed the highest antibacterial activity against both pathogens, and was identified as Bacillus amyloliquefaciens by 16S rRNA gene sequence analysis. B. amyloliquefaciens TK3 could inhibit growth of both pathogens by secretion of antibacterial compounds such as siderophore, rhamnolipid and antimicrobial peptide. Production radius of siderophore on Chrome azurol S agar plate by strain TK3 was 0.53 cm after 14 days of incubation, and concentration of siderophore in King's B medium was 1.06 mmol/ml. It also secreted 82.4 mg/L of rhamnolipid, and antimicrobial peptide that completely inhibited growth of both pathogens at concentration of $30{\mu}l/ml$ in LB medium.

Cloning and functional expression of a cecropin-A gene from the Japanese oak silkworm, Antheraea yamamai (천잠 cecropin-A 유전자 클로닝 및 재조합 발현)

  • Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Sung-Wan;Goo, Tae-Won;Hwang, Jae-Sam
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • A cecropin-A gene was isolated from the immunized larvae of the Japanese oak silkworm, Antheraea yamamai and designed Ay-CecA. The complete Ay-CecA cDNA consists of 419 nucleotides with 195 bp open reading frame encoding a 64 amino acid precursor that contains a putative 22-residue signal peptide, a 4-residue propetide and a 37-residue mature peptide with a theoretical mass of 4046.81. The deduced amino acid sequence of the peptide evidenced a significant degree of identity (62 ~ 78% identity) with other lepidopteran cecropins. Like many insect cecropin, Ay-CecA also harbored a glycine residue for C-terminal amidation at the C-end, which suggests potential amidation. To understand this peptide better, we successfully expressed bioactive recombinant Ay-CecA in Escherichia coli that are highly sensitive to the mature peptide. For this, we fused mature Ay-CecA gene with insoluble protein ketosteroid isomerase (KSI) gene to avoid the cell death during induction. The fusion KSI-CecA protein was expressed as inclusion body. The expressed fusion protein was purified by Ni-NTA immobilized metal affinity chromatography (IMAC), and cleaved by cyanogen bromide (CNBr) to release recombinant Ay-CecA. The purified recombinant Ay-CecA showed considerably antibacterial activity against Gram-negative bacteria, E. cori ML 35, Klebsiella pneumonia and Pseudomonas aeruginosa. Our results proved that this peptide with a potent antibacterial activity may play a role in the immune response of Japanese oak silkworm.

Antioxidant and Anti-Inflammatory Effects of NCW Peptide from Clam Worm (Marphysa sanguinea)

  • Park, Young Ran;Park, Chan-Il;Soh, Yunjo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1387-1394
    • /
    • 2020
  • Clam worms (Marphysa sanguinea) are a rich source of bioactive components such as the antibacterial peptide, perinerin. In the present study, we explored the physiological activities of a novel NCWPFQGVPLGFQAPP peptide (NCW peptide), which was purified from clam worm extract through high-performance liquid chromatography. Tandem mass spectrometry (MS/MS) revealed that NCW was a new peptide with a molecular weight of 1757.86 kDa. Moreover, NCW peptide exhibited significant antioxidant effects, causing a 50% inhibition of DPPH radical at a concentration of 20 μM without showing any cytotoxicity. These were associated with a reduction in the activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in LPS-stimulated RAW264. 7 cells. Furthermore, NCW peptide exhibited anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages via inhibition of the abnormal production of pro-inflammatory cytokines including nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). These anti-inflammatory effects of NCW peptide were associated with the inhibition of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Our results therefore suggest that this novel NCW peptide with antioxidant and anti-inflammatory effects could be a good therapeutic agent against inflammation-related diseases.

Bacteria-Induced Antibiotic Peptide, Protaecin from the White-Spotted Flower Chafer, Protaetia brevitarsis (Protaetia brevitarsis가 생산하는 세균 유도성 항생황성물질, Protaecin)

  • Park, Ho-Yong;Park, Doo-Sang;Park, Soon-Sik;Oh, Hyun-Woo;Shin, Sang-Woon;Lee, Hyeong-Kyu;Joo, Chang-Kyeong;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.52-58
    • /
    • 1994
  • The induced antibiotic peptides were isolatde from the white-spotted folwer chafer, Protaetia brevitarsis by injection of E. coli suspension to the larvae of the insect. The antibacterial activity of the peptides were assayed by the plate growth ingibition method, and were purified by ion-exchange chromatography, reversed-phase HPLC, ion-exchange HPLC and SDS-PAGE etc. The peptides were estimated as 9 kDa in molecular weight and named Protaecin I and Protaecin II, respectively. Protaecin I and II have strong antibacterial activities against Gram-positivie and/or Gram-negative bacteria, and they are stable in the heat treatment and in the range of pH 2-12.

  • PDF

Synthesis and Antibiotic Activities of CRAMP, a Cathelin-related Antimicrobial Peptide and Its Fragments

  • 하종명;신송엽;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1073-1077
    • /
    • 1999
  • CRAMP, a 37-amino acid cationic antimicrobial peptide was recently deduced from the cDNA cloned from mouse femoral marrow RNA. In order to investigate the structure-activity relationship and functional region of CRAMP, CRAMP and its 18-mer overlapping peptides were synthesized by the solid phase method. CRAMP showed broad spectrum antibacterial activity against both Gram-positive and Gram-negative bacterial strains (MIC: 3.125-6.25 μM) but had no hemolytic activity until 50 μM. CRAMP was found to have a potent anticancer activity (IC50: 12-23 μM) against two human small cell lung cancer cell lines. Furthermore, CRAMP was found to display faster bactericidal rate in B. subtilis rather than E. coli in the kinetics of bacterial killing. Among 18-meric overlapping fragment peptides, only CRAMP (16-33) displayed potent antibacterial activity (MIC: 12.5-50 μM) against several bacteria with no hemolytic activity. Circular dichroism (CD) spectra anal-ysis indicated that CRAMP and its analogues will form the amphipathic α-helical conformation in the cell membranes similar to other antimicrobial peptides, such as cecropins and magainins.

Efficient Extracellular Secretion of the Antimicrobial Peptide Magainin 2 in the Chlorella-based System (클로렐라 시스템에서 항균펩타이드 Magainin 2의 효율적인 세포외 분비)

  • Yu Jeong Jeong;Jae Yoon Hwang;Sung Chun Kim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Various antimicrobial peptides (AMPs) from microalgae have shown antibacterial, antiviral, antifungal, anticancer, and antioxidant effects, and play crucial roles in medical applications, aquaculture-related disease management, and the food industry. Magainin 2 (MAG2), an AMP, exhibits high antibacterial and antitumor activity, necessitating an efficient recombinant expression system for low-cost, large-scale production. To enhance MAG2 secretion efficiency in Chlorella, we constructed the SS:MAG2:His vector using the known Chlamydomonas reinhardtii CA1 signal sequence (SS) and obtained a stable transformant via an Agrobacterium-mediated transformation method and RT-qPCR. ELISA results revealed that the MAG2 content secreted into the medium by the SS:MAG2:His transformants increased proportionally with mRNA expression. These findings offer a strategy for high MAG2 secretion in the Chlorella vulgaris platform, potentially minimizing downstream processing costs.

Expression of Biologically Active Insect-Derived Antibacterial Peptide, Defensin, in Yeast (효모에서 활성형의 곤충유래 항균펩티드 defensin의 발현)

  • 강대욱;안순철;김민수;안종석
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.477-482
    • /
    • 2002
  • As a biological model system for the production of an active antibacterial peptide, we have attempted the expression and secretion of insect defensin in Saccharomyces cerevisiae. Nucleotide sequences encoding mature defensin composed of 40 amino acids were fused in frame with promoter and signal sequence of Saccharomyces diastaticus glucoamylase, and mating factor $\alpha$ l[MF $\alpha$1] prosequence. The host strain, S. cerevisiae 2805 was transformed with the resulting plasmid, pSMFll The secretion of functional defensin was confirmed by growth inhibition zone assay using Micrococcus luteus as a test organism. Insect defensin was secreted to the culture supernatant in biologically active form by glucoamylase signal sequence and mating factor $\alpha$1 prosequence. Most of antibacterial activity was detected in the culture supernatant. Defensin was also active against Staphylococcus aureus and Listeria monocytogenes.

In Vivo Wound Healing Activity of Crocodile (Crocodylus siamensis) Hemoglobin and Evaluation of Antibacterial and Antioxidant Properties of Hemoglobin and Hemoglobin Hydrolysate

  • Pakdeesuwan, Anawat;Araki, Tomohiro;Daduang, Sakda;Payoungkiattikun, Wisarut;Jangpromma, Nisachon;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • The hydrolysis of proteins constitutes an invaluable tool, granting access to a variety of peptide fragments with potentially interesting biological properties. Therefore, a hemoglobin (Hb) hydrolysate of Crocodylus siamensis was generated by digestion under acidic conditions. The antibacterial and antioxidant activities of the Hb hydrolysate were assessed in comparison with intact Hb. A disc diffusion assay revealed that the Hb hydrolysate exhibited antibacterial activity against eight strains of gram-positive bacteria and showed a higher efficacy than intact Hb. Moreover, the antioxidant activity of intact Hb and its hydrolysate was evaluated using ABTS and DPPH radical scavenging assays. The Hb hydrolysate exhibited free radical scavenging rates of 6-32%, whereas intact Hb showed a slightly higher activity. In addition, non-toxicity to human erythrocytes was observed after treatment with quantities of Hb hydrolysate up to $10{\mu}g$. Moreover, active fragmented Hb (P3) was obtained after purifying the Hb hydrolysate by reversed-phase HPLC. Scanning electron microscopy demonstrated the induction of bacterial cell membrane abnormalities after exposure to P3. Antibacterial and antioxidant activities play crucial roles for supporting the wound healing activity. Consequently, an in vivo mice excisional skin wound healing assay was carried out to investigate the effects of intact Hb treatment on wound healing in more detail. The results clearly demonstrate that intact Hb is capable of promoting 75% wound closure within 6 days. These findings imply that intact Hb of C. siamensis and its acid hydrolysate may serve as valuable precursors for food supplementary products benefitting human health.