DOI QR코드

DOI QR Code

Cloning and functional expression of a cecropin-A gene from the Japanese oak silkworm, Antheraea yamamai

천잠 cecropin-A 유전자 클로닝 및 재조합 발현

  • Kim, Seong-Ryul (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Choi, Kwang-Ho (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, Sung-Wan (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Goo, Tae-Won (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
  • 김성렬 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 최광호 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 김성완 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 구태원 (농촌진흥청 국립농업과학원 농업생물부) ;
  • 황재삼 (농촌진흥청 국립농업과학원 농업생물부)
  • Received : 2014.04.08
  • Accepted : 2014.05.15
  • Published : 2014.04.30

Abstract

A cecropin-A gene was isolated from the immunized larvae of the Japanese oak silkworm, Antheraea yamamai and designed Ay-CecA. The complete Ay-CecA cDNA consists of 419 nucleotides with 195 bp open reading frame encoding a 64 amino acid precursor that contains a putative 22-residue signal peptide, a 4-residue propetide and a 37-residue mature peptide with a theoretical mass of 4046.81. The deduced amino acid sequence of the peptide evidenced a significant degree of identity (62 ~ 78% identity) with other lepidopteran cecropins. Like many insect cecropin, Ay-CecA also harbored a glycine residue for C-terminal amidation at the C-end, which suggests potential amidation. To understand this peptide better, we successfully expressed bioactive recombinant Ay-CecA in Escherichia coli that are highly sensitive to the mature peptide. For this, we fused mature Ay-CecA gene with insoluble protein ketosteroid isomerase (KSI) gene to avoid the cell death during induction. The fusion KSI-CecA protein was expressed as inclusion body. The expressed fusion protein was purified by Ni-NTA immobilized metal affinity chromatography (IMAC), and cleaved by cyanogen bromide (CNBr) to release recombinant Ay-CecA. The purified recombinant Ay-CecA showed considerably antibacterial activity against Gram-negative bacteria, E. cori ML 35, Klebsiella pneumonia and Pseudomonas aeruginosa. Our results proved that this peptide with a potent antibacterial activity may play a role in the immune response of Japanese oak silkworm.

면역 유도된 천잠(Antheraea yamamai) 유충에서 cecropin-A 유전자를 분리하였고 이 유전자를 Ay-CecA로 명명하였다. 전체 Ay-CecA cDNA 크기는 419 bp로 64개의 아미노산 잔기를 인코딩하는 195 bp ORF로 구성되어 있다. 천잠 CecA 유전자는 22개 잔기의 signal peptide, 4개 잔기의 propeptide 및 항균활성을 갖는 37개 잔기로 구성된 성숙 단백질(mature protein) 영역으로 구성되고 예상 분자량은 4046.81 Da으로 산출되었다. 천잠 CecA의 아미노산 서열은 다른 나비목 곤충에서 분리된 cecropin와 매우 높은 상동성(62 ~ 78%)을 나타냈다. Ay-CecA 유전자의 C말단에 기존에 보고된 곤충의 cecropin에서와 동일하게 C말단 아미드화를 위한 glycine 잔기가 존재하고 있다. 이 펩타이드의 항균활성을 검정하기 위해서 대장균 발현 시스템을 이용하여 활성이 있는 재조합 Ay-CecA 발현에 성공하였다. 발현 기주인 대장균에 대한 재조합 CecA 독성 중화를 위해서 불용성 단백질인 ketosteroid isomerase(KSI) 유전자를 CecA 유전자와 융합하였다. 융합 CecA-KSI 단백질은 대부분 불용성 단백질로 발현되었다. 발현된 융합단백질은 Ni-NTA immobilized metal affinity chromatography(IMAC)에 의해서 정제하였으며 CNBr 반응을 통하여 재조합 CecA를 절단하여 용출하였다. 최종적으로 양이온 교환 chromatography 과정을 통하여 CecA를 순수 정제하였다. 정제된 재조합 Ay-CecA는 그람음성균인 E. cori ML 35, Klebsiella pneumonia 및 Pseudomonas aeruginosa에 대해 매우 높은 항균활성을 나타냈었다. 따라서 본 연구 결과, 높은 항균활성 지닌 CecA는 천잠의 면역 반응에서 중요한 역할을 담당할 것으로 사료된다.

Keywords

References

  1. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13, 61-92. https://doi.org/10.1146/annurev.iy.13.040195.000425
  2. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nature Rev Microbiol 3, 238-250. https://doi.org/10.1038/nrmicro1098
  3. Bulet P, Hetru C, Dimarcq J, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23, 329-344. https://doi.org/10.1016/S0145-305X(99)00015-4
  4. Callaway JE, Lai J, Haselbeck B, Baltaian M, Bonnesen SP, Weickmann J, Wilcox G, Lei SP (1993) Modification of the C terminus of cecropin is essential for broad-spectrum antimicrobial activity. Antimicrob Agents Chemother 37, 1614-1619. https://doi.org/10.1128/AAC.37.8.1614
  5. Casteels P, Ampe C, Riviere L, Damme JV, Elicone C, Fleming M, Jacobs F, Tempst P (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem 187, 381-386. https://doi.org/10.1111/j.1432-1033.1990.tb15315.x
  6. Cociancich S, Bulet P, Hetru C, Hoffmann JA (1994) The inducible antibacterial peptides of insects. Parasitol Today, 132-139.
  7. DeLucca AJ, Bland JM, Jacks TJ, Grimm C, Cleveland TE, Walsh TJ (1997) Fungicidal activity of cecropin A. Antimicrob Agents Chemother 41, 481-483.
  8. Hara S, Taniai K, Kato Y, Yamakawa M (1994) Isolation and áamidation of the non-amidated form of cecropin D from larvae of Bombyx mori. Comp Biochem Physiol B 108, 303-308. https://doi.org/10.1016/0300-9629(94)90099-X
  9. Hoffman JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284, 1313-1318. https://doi.org/10.1126/science.284.5418.1313
  10. Kim SR, Lee EM, Yoon HJ, Choi YS, Yun EY, Hwang JS, Jin BR, Lee IH, Kim I (2007) Antibactrial activity of peptides synthesized based on the Bombus ignitus abaecin, a novel prolinerich antimicrobial peptide. Int J Indust Entomol 14(2), 147-150.
  11. Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11, 105-128. https://doi.org/10.1146/annurev.iy.11.040193.000541
  12. Liang Y, Wang JX, Zhao XF, Du XJ, Xue JF (2006) Molecular cloning and characterization of cecropin from the housefly (Musca domestica), and its expression in Escherichia coli. Dev Comp Immunol 30, 249-257. https://doi.org/10.1016/j.dci.2005.04.005
  13. Morishima I, Suginaka S, Ueno T, Hirano H (1990) Isolation and structure of cecropins, inducible antibacterial peptides, from the silkworm, Bombyx mori. Comp Biochem Physiol B 95, 551-554. https://doi.org/10.1016/0305-0491(90)90019-P
  14. Otvos L (2000) Antibacterial peptides isolated from insects. J Peptide Science 6, 497-511. https://doi.org/10.1002/1099-1387(200010)6:10<497::AID-PSC277>3.0.CO;2-W
  15. Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. peptides 24, 1681-1691. https://doi.org/10.1016/j.peptides.2003.08.023
  16. Saito A, Ueda K, Imamura M, Atsumi S, Tabunoki H, Miura N, Watanabe A, Kitami M, Sato R (2005) Purification and cDNA cloning of a cecropin from the longicorn beetle, Acalolepta luxuriosa. Comp Biochem Physiol B 142, 317-323. https://doi.org/10.1016/j.cbpb.2005.08.001
  17. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248. https://doi.org/10.1038/292246a0
  18. Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A (2008) Agenome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol 38, 1087-1110. https://doi.org/10.1016/j.ibmb.2008.09.001
  19. Vizioli J, Bulet P, Charlet M, Lowenberger C, Blass C, Muller HM, Dimopoulos G, Hoffmann J, Kafatos FC, Richman A (2000) Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 9, 75-84. https://doi.org/10.1046/j.1365-2583.2000.00164.x
  20. Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med (Berl) 85, 317-329. https://doi.org/10.1007/s00109-006-0143-4
  21. Zasloff M (2002) Antimicrobial peptides of muticellular organism. Nature 415, 329-344.