• Title/Summary/Keyword: Antibacterial agent

Search Result 335, Processing Time 0.027 seconds

Synthesis and Antibacterial Activity of Some Oxazolone Derivatives (옥사졸론 유도체의 합성과 항균성)

  • Aaglawe M. J.;S. S. Dhule;S. S. Bahekar;P. S. Wakte;D. B. Shinde
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.133-136
    • /
    • 2003
  • A series of oxazolone derivatives (4a-n) have been synthesized as a potential antibacterial agent. Titled compounds have been prepared by the condensation of aryloxy acetyl-amino-acetic acid with aldehyde in presence of ethanol, acetic anhydride and sodium acetate. The structures of the new compounds were established on the basis of $^1H$ NMR and IR spectral data.

Design, Synthesis and Antibacterial Activity Studies of Novel Quinoline Carboxamide Derivatives

  • Shivaraj, Yellappa;Naveen, Malenahalli H.;Vijayakumar, Giriyapura R.;Kumar, Doyijode B. Aruna
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.241-245
    • /
    • 2013
  • A series of novel quinoline-6-carboxamides and 2-chloroquinoline-4-carboxamides were synthesized by the reaction of their analogous carboxylic acids with various amine derivatives in the presence of base TEA and protecting agent BOP at room temperature. Synthesized compounds were confirmed by spectral characterization viz IR, $^1H$-NMR, and MS. Antibacterial activity carried out against Escherichia coli and Staphyllococcus aureus indicated that the synthesized compounds were active against these microorganisms.

Antibacterial Activity of Acanthoic acid Isolated from Acanthopanax koreanum against Oral and Skin Microfloras

  • Kim, Jin-Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1625-1628
    • /
    • 2006
  • The (-)-pimara-9 (11), 15-dien-19-oic acid, acanthoic acid was extracted from the roots of Acanthopanax koreanum using bioassay-guided isolation of a MeOH extract. Acanthoic acid was assayed against Streptococcus mutans and Staphylococcus epidermidis causing dental caries and opportunistic pathogen. The minimum inhibitory concentration (MIC) of acanthoic acid against Streptococcus mutans and Staphylococcus epidermidis was 2 and 4 ${\mu}g/mL$, respectively, which was much lower than those of other natural antimicrobial agents such as 8 ${\mu}g/mL$ of tanshinone IIA. Acanthoic acid also significantly inhibited the growth of other cariogenic bacteria such as Streptococcus sobrinus and Streptococcus sanguis, and Streptococcus grodenii in the MIC range of 4${\sim}$32 ${\mu}g/mL$. Our findings suggest that acanthoic acid could be employed as a potential antibacterial agent for preventing dental caries and skin infections.

Isolation and Characterization of an Antibacterial Substance from Rheum palmatum for Treatment of Bacterial Vaginosis (대황으로부터 세균성 질염 치료를 위한 항균성 물질의 분리 및 특성)

  • Jang, Jieun;Kang, Dong-Hee;Yoon, Jaewoo;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Rheum palmatum has traditionally been used as a preventive agent and medication against fever and infection. The aim of this study was to isolate and characterize an antibacterial substance from R. palmatum that is effective against bacterial vaginosis. A methanol extract from R. palmatum showed antibacterial activity against Lactobacillus vaginalis KC TC 3515, Chryseobacterium gleum KCTC 2904, and Sphingomonas paucimobilis KCTC 2834, which cause bacterial vaginosis. After extraction and pH control of the methanol extract from R. palmatum, we found that acidic and alkaline extracts did not show antibacterial activity. A neutral extract (50 mg/mL) displayed an inhibitory zone of 18 mm on a nutrient agar plate with C. gleum KCTC 2904. Fractions No. 11 and 12 among 41 fractions obtained by silica gel column chromatography produced inhibitory zones of 10 mm on nutrient agar plates with C. gleum KCTC 2904. $R_f0.15$ and $R_f0.17$ spots produced by TLC of fraction No. 11 showed antibacterial activity against C. gleum KCTC 2904. Isolation and purification of the peak at a retention time (Rt) of 9.427 min was achieved by HPLC of $R_f0.29spots$. The peak at Rt 9.427 min showed antibacterial activity against C. gleum KCTC 2904.

Phytochemicals and antioxidant capacity of some tropical edible plants

  • Hong, Heeok;Lee, Jun-Hyeong;Kim, Soo-Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1677-1684
    • /
    • 2018
  • Objective: To find biological functions such as antibacterial and antioxidant activities in several tropical plants and to investigate the possibility of antibiotic substitute agents to prevent and treat diseases caused by pathogenic bacteria. Methods: Plants such as Poncirus trifoliata fruit (Makrut), Zingiber officinale Rosc (Khing), Areca catechu L. (Mak), Solanum melongena L. I (Makkhuayao), and Solanum melongena L. II (Makhurapro) were extracted by methanol, n-hexane, chloroform, ethyl acetate, butanol and water. The free radical scavenging activities were measured using 2-diphenyl-2-picryl hydrazyl photometric assay. Antibacterial activities with a minimum inhibitory concentration (MIC) were observed by agar diffusion assay against pathogenic strains of Escherichia coli, Burkholderia sp., Haemopilus somnus, Haemopilus parasuis, Clostridium perfringens, and Pantoea agglomerans. Results: Poncirus trifoliata fruit methanol extract showed antibacterial activities against gram-negative and gram-positive pathogens. Additionally, this showed the strongest antibacterial activity against Burkholderia sp. and Haemopilus somnus with MIC $131{\mu}g/mL$, respectively. Areca catechu L. water extract showed antibacterial activities against Burkholderia sp., Haemopilus somnus, and Haemopilus parasuis. The MIC value for Haemopilus parasuis was $105{\mu}g/mL$ in this. Antioxidant activity of Zingiber officinale Rosc n-hexane extract showed 2.23 mg/mL effective concentration 50% ($EC_{50}$) value was the highest activity among tropical plants extracts. Total polyphenol content in Zingiber officinale Rosc methanol extract was $48.4{\mu}g/mL$ and flavonoid content was $22.1{\mu}g/mL$ showed the highest values among tested plants extracts. Conclusion: Taken together, these results suggest that tropical plants used in this study may have a potential benefit as an alternative antibiotics agent through their antibacterial and antioxidant activities.

ANTIBACTERIAL EFFECT OF POLYPHOSPHATE ON ENDODONTOPATHIC BACTERIA (근관감염균에 대한 polyphosphate의 항균효과)

  • Shin, Jeong-Hee;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.435-448
    • /
    • 2003
  • This study was performed to observe the antibacterial effect of polyphosphate (polyP) with various chain lengths (P3~P75) on virulent. invasive strains of P. gingivalis A7A1-28 and W50, and multidrug resistant E. faecalis ATCC29212. P. gingivalis strains were grown in brain-heart infusion broth (BHI) containing hemin and vitamin K with or without polyP. PolyP was added at the very beginning of the culture or during the exponential growth phase of the culture. Inhibition of the growth of P. gingivalis was determined by measuring the absorbancy at 540nm of the grown cells. Viable cell counts of the culture and release of intracellular nucleotide from P. gingivalis were measured. E. faecalis was grown in plain BHI with antibiotics alone or in combination with polyP(calgon: 0.1~1.0%) and the bacterial absorbancy was measured. The overall results suggest that polyP has a strong antibacterial effect on the growth of the virulent strains of P. gingivalis and the antibacterial activity of polyP seems largely bactericidal. accompanying bacteriolysis in which chelation phenomenon is not involved. Although polyP does not exert antibacterial activity against E. faecalis, it appears to increase antibacterial effect of erythromycin and tetracycline on the bacterium. Therefore, polyP alone or in combination with antibiotics may be developed as a candidate for the agent controlling oral infections including endodontic infection.

Antibacterial Activity of Some Medicinal Plants against Propionibacterium acnes (여드름 원인균 Propionibacterium acnes에 대한 생약 추출물의 항균활성 측정)

  • Weon, Jin-Bae;Ahn, Ju-Hee;Ma, Choong-Je
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.1
    • /
    • pp.98-101
    • /
    • 2011
  • Acne, one of the most common skin disease, is a chronic inflammatory disease and is caused by uncertain and multiple factors. Propionibacterium acnes belongs to the human cutaneous normal flora and is a major etiologic agent of acne vulgaris. In this study, we evaluated the antibacterial effect of 19 medicinal plants. Antibacterial activity of extracts prepared from the 19 medicinal plants was investigated against bacteria related to acnes, Propionibacterium acnes. Among them, some medicinal plants inhibited the growth of the P. acnes. Minimum inhibitory concentration (MIC) of Polygonum aviculare (Herb) was 0.2 mg/ml against P. acnes. MIC of Dianthus chinensis (Aerial Part), Forsythia viridissima (Fruit), Lygodium japonicum (Spore) and Sophora flavescens (Root) were 0.4 mg/ml. Based on these results, Polygonum aviculare (Herb), Dianthus chinensis (Aerial Part), Forsythia viridissima (Fruit), Lygodium japonicum (Spore) and Sophora flavescens (Root) may be considered as a candidate for a good medicine for acne.

Preparation and Characterization of Antibacterial Dental Resin Cement Material

  • Kim, Duck-Hyun;Jung, Hwi-Su;Kim, Sun-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • Bis-GMA, TEGDMA, and camphorquinone were used as the main material, cross-linking agent, and photoinitiator, respectively. In addition, 2-isocyanatoethyl methacrylate was used as an additive for high strength, while the 3-hydroxypyridine was used as an additive for antibacterial activity. Photopolymerization was also carried out at a 440-480 nm wavelength and at about $1000mW/cm^2$ intensity for about 40 seconds. The breaking strength measurement of the samples showed that the breaking strength increased along with increasing the addition ratio of IEM, while it took less time until the polymerization was complete, thereby suggesting that the degree of polymerization has the tendency to increase. And also, compared to the size of the clear zone formed by ampicillin, the 3-hydroxypyridine group exhibited antimicrobial activity induced by ampicillin. The results of this study suggest that the use of 2-isocyanatoethyl methacrylate as an additive for high strength and 3-hydroxypyridine as an additive for improved antibacterial activity would improve the usability of the fabricated polymer as a dental resin cement material with high functionality.

Assessment of antibacterial activity of the cardiovascular drug nifedipine

  • Pal, Tapas;Dutta, Noton Kumar;Mazumdar, Kaushiki;Dasgupta, Asish;L., Jeyaseeli;Dastidar, Sujata G.
    • Advances in Traditional Medicine
    • /
    • v.6 no.2
    • /
    • pp.126-133
    • /
    • 2006
  • The cardiovascular drug nifedipine exhibited significant in vitro and in vivo antibacterial activity against 331 strains of bacteria belonging to three Gram-positive and twelve Gram-negative genera. The minimum inhibitory concentration of the drug, as determined both by agar and broth dilution methods, was seen to range from $25\;-\;200\;{\mu}g/ml$ against most test bacteria, including several pathogenic ones, in the in vitro studies. Nifedipine was bacteriostatic in action. in vivo studies with this drug showed that it could offer statistically significant protection (P < 0.001) to mice challenged with a virulent bacterium. Therefore, nifedipine has the potential of an antibacterial agent, which may be developed after further pharmacological studies.

Analysis of Physical and Antibacterial Properties of Functional Silicone Hydrogel Ophthalmic Lenses Containing Graphene Groups

  • Su-Mi Shin;Hye-In Park;A-Young Sung
    • Korean Journal of Materials Research
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • The physical and antibacterial properties of ophthalmic lenses fabricated by copolymerization with hydrogel monomers using two types of graphene were measured, and their usability as contact lens materials was analyzed. For polymerization, silicone monomers, including SID-OH, 3-(methacryloxy)propyl tris(trimethylsiloxy)silane, and decamethylcyclopentasiloxane, were used, and N,N-dimethylacetamide, ethylene glycol dimethacrylate as a crosslinking agent, and azobisisobutyronitrile as an initiator were added. Also, graphene oxide nanoparticle (GON) and graphene nanoplate (GNP) were used as an additive, and the physical properties of the lenses fabricated after copolymerization were evaluated. The fabricated lenses satisfied the basic physical properties of general hydrogel contact lenses and showed the characteristics of lenses with high water content, and the disadvantage of very weak durability, due to low tensile strength. However, it was confirmed that the tensile strength and antibacterial properties were greatly improved by adding GON and GNP. With GON, the oxygen permeability and refractive index of the fabricated lenses were slightly improved. Therefore, it was determined that the graphene materials used in this study can be used in various ways as a contact lens material.