• Title/Summary/Keyword: Anti-microbial activity

Search Result 320, Processing Time 0.023 seconds

Anti-inflammatory Activities of Ethanol Extracts of Dried Lettuce (Lactuca sativa L.) (건조 상추 에탄올 추출물의 항염증 활성)

  • Lee, Eun-Joo;Seo, Yu-Mi;Kim, Yong-Hyun;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.325-331
    • /
    • 2019
  • Lettuce (Lactuca sativa L.) is one of the most popular green leafy vegetables, and it contains various beneficial components including polyphenolic compounds and has been known to possess various biological functions such as anti-microbial, anti-oxidative, and anti-inflammatory activities. In the present study, we prepared ethanol extract of dried lettuce (DLE) and investigated its anti-inflammatory activity. To evaluate the anti-inflammatory activity of DLE, nitric oxide (NO) production was measured in LPS-activated mouse macrophage RAW 264.7 cells. DLE significantly suppressed NO production in these cells without affecting cell viabilities while resveratrol was used as a positive control. DLE dramatically decreased the expression of pro-inflammatory genes such as iNOS and COX-2 at the mRNA and protein levels and reduced the expression of several cytokines including $IL-1{\alpha}$, $IL-1{\beta}$, IL-1F6, $TNF-{\alpha}$, CSF2 and CXCL10. In addition, DLE suppressed phosphorylation of MAPKs and the nuclear translocation of $NF-{\kappa}B$ p65 indicating DLE shows its anti-inflammatory activity via regulating MAPKs pathway and $NF-{\kappa}B$ pathways. And also, DLE reduced the production of reactive oxygen species in a dose-dependent manner. DLE increased HO-1 protein expression, and also increased the nuclear translocation of Nrf2. Overall, our results suggest that lettuce down-regulate various pro-inflammatory genes and have its anti-inflammatory activity via regulating MAPKs, $NF-{\kappa}B$, and Nrf2/HO-1 pathways.

Antibacterial Activity of Peptides Synthesized Based on the Bombus ignitus abaecin, A Novel Proline-Rich Antimicrobial Peptide

  • Kim, Seong-Ryul;Lee, Eun-Mi;Yoon, Hyung-Joo;Choi, Yong-Soo;Yun, Eun-Young;Hwang, Jae-Sam;Jin, Byung-Rae;Lee, In-Hee;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.2
    • /
    • pp.147-150
    • /
    • 2007
  • Abaecin is a largest member of the proline-rich anti-microbial peptide family found only in the hymenopterans. A cDNA of abaecin was previously isolated and cloned from Bombus ignitus: the mature peptide of Bombus ignitus abaecin was composed of 39 amino acid residues. In the present study, we determined the antibacterial effect of B. ignitus abaecin synthesized at several lengths against several bacteria by radial diffusion assay. The 37-mer peptide (Ab37) inhibited the growth of Gram-negative bacteria Escherichia coli ML-35, Pseudomonas aeruginosa and Salmonela typhimurium, but showed limited inhibitory activity toward Gram-positive bacteria, except for Micrococcus luteus. The truncated 26-mer peptide (Ab26), which was synthesized after truncating some amino acid residues at both N-terminus and C-terminus from the Ab37 peptide, still showed equivalent antibacterial activity to the Ab37. On the other hand, several further truncated peptides exhibited lower activity then did Ab37 peptide.

Phytochemical Screening and Antibacterial Activity Coix lacryma-jobi Oil

  • Diningrat, Diky Setya;Risfandi, Marsal;Harahap, Novita Sari;Sari, Ayu Nirmala;Kusdianti, Kusdianti;Siregar, Henny Kharina
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.100-106
    • /
    • 2020
  • Coix lacryma-jobi (Hanjeli) is known to posses anti-microbial properties. Therefore, phytochemical compounds of C. lacryma-jobi have been studied to produce novel antimicrobial agents as treatments against antibiotic-resistant bacteria.The objective of this study was to determine the phytochemical composition and antibacterial activity of the C. lacryma-jobi oil against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The phytochemical composition of the oil was determined via gas chromatography mass spectrophotometry (GC-MS). Moreover, agar disk and agar well diffusion were employed to screen the antibacterial activity of the oil. An agar well diffusion test was implemented to determinate MIC's (minimum inhibitory concentrations). Dodecanoic acid, tetradecanoic acid, 2,3-dihydroxypropylester, 1,3-dioctanoin, N-methoxy-N-methyl-3,4-dihydro-2H-thiopyran6-carboxamide, propanamide, 5-Amino-1-(quinolin-8-yl)-1,2,3-triazole-4-carboxamide, and pyridine were identified in the C. lacryma-jobi oil. The MIC value of the oil was 0.031 g/L and the MBC of the oil was 0.125 g/L effective in all test bacteria. Dodecanoic acid displayed inhibitory activity against gram-positive and gram-negative bacteria. Therefore, our research demonstrated C. lacryma-jobi (Hanjeli) oil exhibited antibacterial activity against E. coli, S. aureus, and B. subtilis. These research suggest that C. lacryma-jobi root oil could be used for medicinal purposes; however clinical and in vivo tests must be performed to evaluate its potential as an antibacterial agent.

The Studies on the Development of Low Irritable Preservative System with Phenoxyethanol in Cosmetics (Phenoxyethanol을 이용한 저자극 방부시스템 개발에 관한 연구)

  • Ahn, Gi-Woong;Lee, Chn-Mong;Kim, Hyeong-Bae;Jeong, Ji-Hen;Jo, Byoung-Kee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.43-49
    • /
    • 2005
  • Recently, according as people who have sensitive skin increase, we've been giving more importance to the safety of cosmetics. Especially, preservative is known to be one of the main stimuli which cause side-effects of cosmetics. However, there have been few reports describing cell cytotoxicity, skin penetration, oil-aqueous phase partition, anti-microbial activity of preservatives and their correlation with skin irritation. The study is aimed to develop low irritable preservative system with phenoxyethanol, one of the most commonly used preservatives in cosmetics, considering various factors mentioned above. According to our results of cell cytotoxicity against human normal fibroblasts by means of MTT assay, phenoxyethanol showed the lowest cytotoxicity when compared to other preservatives tested (cytotoxicity: pro-pylparaben > butylparaben > ethylparaben > methylparaben > triclosan > phenoxyethanol), but human patch test for assessing shin primary irritation revealed that phenoxyethanol has higher skin irritation than methylparaben and triclosan. We performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse (5 ${\~}$ 8 weeks, male) to evaluate the rate of skin penetration of preservatives. From the results, we found that the higher irritable property of phenoxyethanol in human skin correlates with its predominant permeability (skin penetration: phenoxyethanol > methylparaben > ethylparaben > propylparaben > butylfaraben > triclosan). Therefore, we made an effort to reduce skin permeability of phenoxyethanol and found that not only the rate of skin penetration of phenoxyethanol but also its skin irritation is dramatically reduced in formulas containing oils with low polarity. In the experiments to investigate the effect of oil polarity on the oil-aqueous phase partition of phenoxyethanol, more than $70\%$ of phenoxyethanol was partitioned in aqueous phase in formulas containing oils with low polarity, while about $70 {\~} 90\%$ of phenoxyethanol was partitioned in oil phase in formulas containing oils with high polarity. Also, in aqueous phase phenoxyethanol showed greater anti-microbial activity. Conclusively, it appears that we can develop less toxic preservative system with reduced use dosage of phenox-yethanol and its skin penetration by changing oil composition in formulas.

The Antioxidant and Skin-whitening Effects of Saccharomyces cerevisiae FT4-4 Isolated from Berries Grown in Sunchang (화장품 소재로서 순창 베리류 유래 Sacchromyces cerevisiae FT4-4의 항산화 활성 및 미백 효과)

  • Seo, Ji won;Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.175-182
    • /
    • 2021
  • Saccharomyces lysate has the well-known function of soothing the skin in various ways: it is an anti-irritant and can treat skin care conditions, such as skin whitening and antioxidative activity. However, data on the safety for use of Saccharomyces lysate in cosmetics and skin care products are still limited. To design a new cosmetic material with antioxidant and skin-whitening effects, 80 yeast strains were isolated from berries grown in Sunchang. Among the isolates, the FT4-4 strain, which exhibited superior biological activities, was selected for further experiments. The FT4-4 strain was identified as Saccharomyces cerevisiae by 18S rRNA gene sequencing analysis. S. cerevisiae FT4-4 showed higher DPPH radical-scavenging (51.41%), superoxide dismutase (62.23%), and tyrosinase inhibition (64.75%) activities. The highest yield of biomass (3.16 g/l) and maximum growth rate of S. cerevisiae FT4-4 were observed within 16 h. Furthermore, the cytotoxicity potential of S. cerevisiae FT4-4 on B16F10 melanoma cells was measured by an MTT assay, and the results indicated that S. cerevisiae FT4-4 had a capacity to inhibit melanin up to 72.02% at an initial 10 mg/ml concentration. These results suggest that S. cerevisiae FT4-4 could be a promising candidate as a multi-functional material for application in the cosmetic industry, especially because of its antioxidant and skin-whitening effects.

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.

Radioprotective Effects of Propolis on the Mouse Testis Exposed to X-ray. (프로폴리스가 X-선에 노출된 마우스 정소에 미치는 방사선 방어 효과)

  • Ji, Tae-Jung;Kim, Jong-Sik;Jeong, Hyung-Jin;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.664-670
    • /
    • 2007
  • The propolis is natural product produced by honeybees and is known to have many biologically useful properties such as anti-microbial, anti-oxidative and anti-tumorigenic activity. However, its radio-protective property has not been well studied. To investigate radio-protective effect of propolis on mouse testis, mice were supplemented with propolis after 5 Gy irradiation. The histological changes of testis were detected by TEM. The results indicate that propolis may protect tissue deformation which is induced by 5 Gy of ionizing radiation. Furthermore, to elucidate the potential molecular mechanisms involved in radio-protective property of propolis, we performed microarray experiments using oligo DNA microarray. We found 65 up-regulated genes and 224 down-regulated genes, whose expression levels were affected more than 2-fold by propolis treatment in mice irradiated at 5 Gy. We confirmed microarray data with reverse transcription-PCR using gene specific primers. The results of RT-PCR are highly correlated with those of microarray. These results may help understanding molecular mechanisms of radioprotective effects by propolis in mouse model.

Characteristics of Monascus Natural Pigments Produced by Monascus sp. MK2-2 (Monascus sp. MK2-2가 생산하는 홍국천연색소의 특성)

  • Jeon, Chun-Pyo;Kim, Chang-Suk;Lee, Jung-Bok;Shin, Ji-Won;Choi, Sung-Yeon;Choi, Chung-Sig;Lee, Oh-Seuk;Kwon, Gi-Seok
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.137-142
    • /
    • 2007
  • For the production of natural pigments with microbe, the strains which produced monascus pigment were isolated, and then culture condition and extraction condition were investigated. These results are summarized as follows; The strain which ran produce monascus natural pigment was isolated from natural microbial sources and we made mutant of this strain with UV($235_{nm}$, 30 second) irradiation. The mutant was identified as Monascus sp. MK2-2. The optimal culture conditions were investigated optimal medium containing 0.3% rice powder, 0.2% yeast extract, 0.3% $NH_4H_2PO_4$ and $30^{\circ}C$ in a rotary shaker (120 rpm) for 5 days (initial pH 5.0), while the pigment production was determined at 24 hr intervals. The effective carbon sources were wheat flour > rice powder > fructose, and effective nitrogen sources were sodium nitrate > $KNO_3$ for production of the monascus natural pigment. The pigment capacity is good from 17 to 22 in C/N ratio. The production amount of monascus natural pigment was 0.38 g per 1 kg of rice. Also, extract of red yeast rice had anti-thrombosis activity like a degree of aspirin.

Antioxidant and Cholesterol-lowering Effects of Lactic Acid Bacteria Isolated from Kelp Saccharina japonica Kimchi (다시마(Saccharina japonica)김치에서 분리한 유산균의 항산화 및 콜레스테롤 감소 효과)

  • Ryu, Dae-Gyu;Park, Seul-Ki;Kang, Min-Gyun;Jeong, Min-Chul;Jeong, Hee-Jin;Kang, Dong-Min;Lee, Jae-Hwa;Kim, Young-Mog;Lee, Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.351-360
    • /
    • 2020
  • Previous studies have suggested that microbial fermentation is an attractive process to develop food products using seaweed. The objective of this study was to isolate and characterize lactic acid bacteria (LAB), which are used as starters for seaweed fermentation. The isolation of LAB strains was conducted using kelp Saccharina japonica kimchi, a well-known fermented seaweed in southeastern Korea. Based on the assay of acid tolerance, bile tolerance and antioxidant activity, 15 strains of LAB were selected for further study. The LABs exhibited cholesterol lowering activity in the range of 15.50 to 94.77%. Among the LABs suitable for food production, Lactobacillus plantarum D-11 had the highest antioxidant and cholesterol lowering activities. This probiotic strain will be applied to develop various kelp fermentation products.

Dyeing Property and Antimicrobial activity of Protein Fiber Using Terminalia chebula Retzius Extract (가자열매 추출물을 이용한 단백질 섬유의 염색과 항균효과)

  • Nam, Ki Yeon;Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.476-484
    • /
    • 2014
  • The purpose of this study was to investigate the dyeing properties and anti-microbial ability of silk and wool fabrics dyed with Terminalia chebula Retzius(TCR) extract using two extraction solvent, hot water and methanol. Dyeing properties of fabrics were studied by investigating the characteristics of colorant, changes in dye uptake under different dyeing conditions, and by investigating color change when mordants were applied. Also, color fastness, and antimicrobial activity of dyed fabrics were estimated. Regardless of extraction solvent type, colorant showed maximum absorption wavelength at 280 nm and 578 nm, which implied that tannin was the major pigment component of TCR. Also, through FT-IR spectrum result, it was confirmed that tannin of TCR methanol extract was hydrolysable tannin. But for the hot water extract, it was only assumed that its tannin was condenced tannin. Fabric dyed with hot water solvent extract showed higher dye uptake than fabric dyed with methanol solvent extract, dye uptake increasing by higher concentration of the dye, longer dyeing time and higher dyeing temperature. And the absorption curve between TCR extract and protein fiber was shaped in the form of Langmuir adsorption isotherm. Fabric dyed without mordant was yellow in color, and when dyed with mordant, fabric showed various colors depending on mordant types except Sn. Color fastness to washing was generally fine and color fastness to light was moderate. But color fastness to rubbing and dry cleaning was outstanding. Lastly, dyed fabrics showed very good antimicrobial activity of 99.9% against Staphylococcus aureus and Kiebsiella pneumoniae.