Antibacterial Activity of Peptides Synthesized Based on the Bombus ignitus abaecin, A Novel Proline-Rich Antimicrobial Peptide

  • Kim, Seong-Ryul (Department of Agricultural Biology, National Institute of Agricultural Science & Technology) ;
  • Lee, Eun-Mi (Department of Agricultural Biology, National Institute of Agricultural Science & Technology) ;
  • Yoon, Hyung-Joo (Department of Agricultural Biology, National Institute of Agricultural Science & Technology) ;
  • Choi, Yong-Soo (Department of Agricultural Biology, National Institute of Agricultural Science & Technology) ;
  • Yun, Eun-Young (Department of Agricultural Biology, National Institute of Agricultural Science & Technology) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Institute of Agricultural Science & Technology) ;
  • Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, In-Hee (Department of Life Science, Hoseo University) ;
  • Kim, Ik-Soo (College of Agriculture and Life science, Chonnam National University)
  • Published : 2007.06.30

Abstract

Abaecin is a largest member of the proline-rich anti-microbial peptide family found only in the hymenopterans. A cDNA of abaecin was previously isolated and cloned from Bombus ignitus: the mature peptide of Bombus ignitus abaecin was composed of 39 amino acid residues. In the present study, we determined the antibacterial effect of B. ignitus abaecin synthesized at several lengths against several bacteria by radial diffusion assay. The 37-mer peptide (Ab37) inhibited the growth of Gram-negative bacteria Escherichia coli ML-35, Pseudomonas aeruginosa and Salmonela typhimurium, but showed limited inhibitory activity toward Gram-positive bacteria, except for Micrococcus luteus. The truncated 26-mer peptide (Ab26), which was synthesized after truncating some amino acid residues at both N-terminus and C-terminus from the Ab37 peptide, still showed equivalent antibacterial activity to the Ab37. On the other hand, several further truncated peptides exhibited lower activity then did Ab37 peptide.

Keywords

References

  1. Boman, H. G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61-92 https://doi.org/10.1146/annurev.iy.13.040195.000425
  2. Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nature Rev. Microbiol. 3, 238-250 https://doi.org/10.1038/nrmicro1098
  3. Bulet, P., C. Hetru, J. Dimarcq and D. Hoffmann (1999) Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329-344 https://doi.org/10.1016/S0145-305X(99)00015-4
  4. Bulet, P., J. Dimarcq, C. Hetru, M. Lagueux, M. Charlet, G. Hegy, A. Van Dorsselaer and J. A. Hoffmann (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268, 14893-14897
  5. Bulet, P., R. Stocklin and L. Menin (2004) Anti-microbial peptides; from invertebrates to vertebrates. Immunol. Rev. 198, 169-184 https://doi.org/10.1111/j.0105-2896.2004.0124.x
  6. Casteels J. K., T. Capaci, P. Casteels and P. Tempst (1994) Acute transcriptional response of the honeybee peptide antibiotics gene repertoire and required post-translational conversion of the precursor structures. J. Biol. Chem. 269, 28569-28575
  7. Casteels, P., C. Ampe, F. Jacobs, M. Vaeck and P. Tempst (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J. 8, 2387-2391
  8. Casteels, P., C. Ampe, L. Riviere, J. V. Damme, C. Elicone, M. Fleming, F. Jacobs and P. Tempst (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381-386 https://doi.org/10.1111/j.1432-1033.1990.tb15315.x
  9. Chernysh S., S. Cociancich, J. P. Briand, C. Hetru and P. Bulet (1996) The inducible antibacterial peptides of the hemipteran insect palomena prasina-Identification of a unique family of proline-rich peptides and a novel insect defensin. J. Insect Physiol. 42, 81-89 https://doi.org/10.1016/0022-1910(95)00085-2
  10. Cociancich, S., A. Dupont, G. Hegy, R. Lanot, F. Holder, C. Hetru, J. A. Hoffmann and P. Bulet (1994) Novel inducible antibacterial peptides from a hemipteran insect, the sapsucking bug Pyrrhocoris apterus. Biochem. J. 300, 567-575 https://doi.org/10.1042/bj3000567
  11. Fehlbaum, P., P. Bulet, S. Chernysh, J. P. Briand, J. P. Roussel, L. Letellier, C. Hetru and J. A. Hoffmann (1996) Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93, 1221-1225
  12. Hara, S. and M. Yamakawa (1995) A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem. J. 310, 651-656 https://doi.org/10.1042/bj3100651
  13. Lehrer R. I., M. Rosenman, S. S. Harwig, R. Jackson and P. Eisenhauer (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137, 167-173 https://doi.org/10.1016/0022-1759(91)90021-7
  14. Levashina E. A., S. Ohresser, P. Bulet, J. -M. Reichhart, C. Hetru and J. A. Hoffmann (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233, 694-700 https://doi.org/10.1111/j.1432-1033.1995.694_2.x
  15. Rees J. A. Moniatte M. and P. Bulet (1997) Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect Biochem. Mol. Biol. 27, 413-422 https://doi.org/10.1016/S0965-1748(97)00013-1
  16. Steiner, H., D. Hultmark, A. Engstrom, H. Bennich and H.G. Boman (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248 https://doi.org/10.1038/292246a0