• Title/Summary/Keyword: Anti-cell adhesion

Search Result 199, Processing Time 0.026 seconds

Immunogenicity and Survival Strategy of Lactobacillus rhamnosus GG in the Human Gut (Lactobacillus rhamnosus GG의 면역조절작용과 장내 정착성)

  • Saito, Tadao;Lim, Kwang-Sei
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Lactobacillus rhamnosus GG(ATCC 53103) is one of the best researched probiotic strains in the world. Studies in children have shown that Lactobacillus rhamnosus GG effectively prevents early atopic disease in patients with high risk. The active molecules associated with the immunostimulatory sequence and anti-allergy effects of L. rhamnosus GG have not yet been identified. Unmethylated CpG motifs in bacterial DNA have a mitogenic effect in mouse immune cells, CpG-containing ISS oligodeoxynucleotides are potent Th1 adjuvants, effective in both preventing and reversing Th2-biased immune deviation in allergy models. The genomic DNA of L. rhamnosus GG is a potent inducer of murine B cell and dendritic cell immunoactivation. In L. rhamnosus GG genomic DNA, ID35 shows high activity in ISS assays in both mice and humans. The effects of ID35 result from a unique TTTCGTT motif located at its 5'-end, and its effects are comparable with murine prototype CpG 1826. L. rhamnosus GG is known to secrete proteinaceous pili encoded by the spaCBA gene cluster. The presence of pili structures may be essential for its adhesion to human intestinal mucus, explaining the prolonged duration of intestinal residence of this bacterium, compared to that of non-piliated lactobacilli.

  • PDF

Genes Associated with Individual Variation of Electroacupuncture Anti-allodynic Effects in Rat

  • Hwang, Byung-Gil;Kim, Sun-Kwang;Han, Jae-Bok;Bae, Hyun-Su;Min, Byung-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1285-1290
    • /
    • 2007
  • The present study aims to identify and characterize genes that cause differen genes between non-responders and responders to electroacupuncture (EA) on mechanical allodynia following peripheral nerve injury. Under sodium pentobarbital anesthesia, animals were subjected to unilateral transection of the superior caudal trunk at the level between S1 and S2 spinal nerves. EA stimulation (2Hz, 0.3 ms, 0.2-0.3 mA) was delivered to Zusanli (ST36) for 30 min 2 weeks after the surgery. The degree of mechanical allodynia was assessed quantitatively by touching the tail with von Frey hair (2.0 g) at 10 min intervals. The rats, which showed an EA-induced decrease of response frequencies under 10 %, were classified as non-responders and those displaying an EA-induced decrease of response frequencies 20 % or more were classified as responders. Results from oligonucleotide microarray, to which cDNAs from the spinal dorsal horn (DH) were applied, showed that hemoglobin beta chain complex and chondroitin sulfate proteoglycan-5 decreased and limbic system-associated membrane protein increased in the non-responder group, whereas calcium-independent alpha-Iatrotoxin receptor homolog-3 increased in the responder group. These results suggest that The functional abnormality of molecules regulating cell adhesion, intracellular signal transduction and cell differentiation in the spinal DH may be involved in the anti-allodynic effect of EA.

The Effect of Dangguijakyak-san on Wound Healing (당귀작약산의 창상 회복에 대한 효과)

  • Yun-Jin Lee;Chang-Hoon Woo;Young-Jun Kim;Hyeon-Ji Kim;Hee-Duk An
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.47-65
    • /
    • 2023
  • Objectives We evaluated the wound healing effects of Dangguijakyak-san (DJ) using C57BL/6 mice that were generated open wound. Methods The study was conducted with seven C57BL/6 mice assigned to each group, divided into the normal group, control group, vitamin E group, DJ low-dose group, DJ high-dose group. We measured total polyphenol, flavonoid contents, the size of the wound, liver function, pro-inflammatory cytokine activity in serum, inflammation-related proteins, adhesion molecules and chemokine proteins, collagen-related proteins in skin tissue and histopathological changes by H&E and Masson's staining. Results DJ treatment significantly reduced the area of the wound compared to the control group. Also, inflammatory cytokines were reduced and the expression of anti-inflammatory-related factors (interleukin-4 [IL-4] and IL-10) was significantly increased in the DJ treatment group. We identified that DJ treatment inhibits both pathways of inflammation, the mitogen-activated protein kinases and nuclear factor-κB pathway. Moreover, the protein expressions of Sirt1 (sirtuin 1), MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1) were decreased by DJ administration. Also, the expression of α-smooth muscle actin and collagen type I alpha 1, collagen-related proteins, that help skin recovery was significantly increased in the DJ treatment group. Histopathologically, a relatively thin epithelial layer could be observed in the DJ administration group, as well as an increase in fibroblasts and collagen fibers. Conclusions These data suggest that DJ treatment is effective in wound healing, suppressing inflammatory proteins, increasing skin repair factors and improving histopathological changes caused by wounds.

Anti-atherosclerotic Effect of the Methanol Extract of Sorbus commixta Cortex in the High Cholesterol-Diet Rats

  • Kang, Dae-Gill;Sohn, Eun-Jin;Kim, Jin-Sook;Lee, Yun-Jung;Moon, Mi-Kyoung;Lee, An-Sook;An, Jun-Seok;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1337-1345
    • /
    • 2006
  • Hypercholesterolemia is a pivotal pathogenic factor for the development and maintenance of atherosclerosis. The present study was designed to evaluate whether the methanol extract of Sorbus commixta cortex (MSC) restores vascular dysfunction in association with the aortic expressions of proinflarnmatory and adhesion molecules in high cholesterol (HC) diet-rats. Chronic treatment with low (100 mg/kg/day) or high doses (200 mg/kg/day) of MSC lowered the increase in plasma levels of triglyceride (TG) and low-density lipoprotein (LDL) cholesterol induced by a cholesterol-enriched diet without affecting on the plasma level of high density lipoprotein (HDL)-cholesterol. Vascular tone attenuated in the HC-diet rats was restored by administration with MSC. Treatment with MSC also suppressed the HC-induced increase in the monocyte chemoattractant protein-1 (MCP-1) and nuclear factor-$_K$B (NF-$_K$B) p65 expressions as well as expressions levels of adhesion molecules including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (ICAM-1), and E-selectin in aorta. The present study also showed that MSC inhibited the HC-mediated induction of ET-1 and ACE expression. In histopathological examination, aortic segments in the HC-diet rat revealed thickening intima and media, which were blocked by administration with MSC. Taken together, MSC could suppress the development of atherosclerosis in the HC-diet rat model through the inhibition of the aortic expression levels of pro-inflammatory and adhesion molecules.

Microarray Analysis of Gene Expression Profile by Treatment of Schizandrae fructus Extract in Inflammation-induced Human Epithelial A549 Cells (염증이 유발된 인간기관지상피세포에서 오미자가 Microarray를 이용한 유전자 발현 분석에 미치는 영향)

  • Jung, Jin-Yong;Jung, Sung-Ki;Jung, Hee-Jae;Rhee, Hyung-Koo
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.543-553
    • /
    • 2008
  • Objective: The goal of this study was to determine the anti-asthma mechanism of SF on TNF-${\alpha}$ induced activation on A549 (human type II-like epithelial) cells. Using oligonucleotide microarray, we sought to establish the molecular mechanism of the protective effects of SF on A549 cells. Material & Methods : Cells were cultured in three different conditions: 1) negative control group was cultured in normal condition of DMEM, 2) positive control group was activated with TNF-${\alpha}$, IL-4. and IL-1${\beta}$, and 3) SF treated group was previously treated with 0.1${\mu}g/ml$ SF after TNF-${\alpha}$, IL-4. and IL-1 activation. Cells of positive control and SF treated groups were cultured for 30 min, 1hr, 3hr and 6hr. Results : The comparative analysis of the gene expression profile revealed that proinflammatory cytokines such as IL1F8, IL1F9, IL1R1. IL1RN, IL1RAPL1, IL8, TNFRSF4, TNFSF10c, TNFSF13, TRAF5, and TRAF7 and inflammation-related genes including MMP2, MMP11, MMP14, MMP15, MMP16, MMP19, MMP25, and MMP27 were down regulated with SF treatment. Cell adhesion molecule genes such as ITGB1, ITGBL1, selectin P ligand, selectin E, ICAM2, ICAM3, VCAM1, PECAM, FCER1G and MMP28 genes were also down-regulated in SF treated A549 cells. Conclusion : These results suggest that the anti-asthmatic effects of SF could be mediated by regulating specific genes related with cell adhesion, proinflammatory cytokine and inflammation-related genes in A549 cells.

  • PDF

Regulatory Effects of Chrysanthemi Zawadskii Herba on NO Production and Vascular Adhesion Molecule Expression (구절초(Chrysanthemi Zawadskii Herba)의 항염증 인자 생성 및 혈관부착인자 발현 억제 효과)

  • Sohn, E.S.;Kim, S.H.;Ha, C.W.;Jang, S.;Sohn, E.H.;Chae, C.J.;Koo, H.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.1
    • /
    • pp.14-22
    • /
    • 2022
  • The purpose of this study is to provide evidence for discovering functional materials through the anti-inflammatory efficacy screening of randomly selected medicinal herbs. We prepared 70% ethanol extracts from 10 herbs and evaluated for the inhibitory effect of NO production on LPS-stimulated mouse macrophage cell line Raw 264.7. As a result, it was confirmed that the Chrysanthemi Zawadskii Herba (CZ) extract had the highest effect of inhibiting NO production induced by LPS. We therefore measured and compared NO inhibitory effects at different concentrations (10, 50, 250 ㎍/mL) of 70% ethanol and water extract of CZ. It was observed that both ethanol and water treatment groups inhibited NO production in a concentration-dependent manner in both ethanol and water treatment groups. In particular, it was confirmed that the CZ 70% ethanol extract (99.97%) had a higher NO inhibitory effect than the water extract (93.32%) in the high concentration (250 ㎍/mL) treatment group. There was no effect of CZ extract on cell viability at all concentrations used in the experiment. Moreover, it was shown that CZ ethanol extract remarkably inhibited the expression of VCAM-1 induced by TNF-𝛼, and it was slightly decreased even by treatment with water extract. This study suggests that Chrysanthemi Zawadskii Herba has potential as a functional substance that regulates vascular inflammation.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

Evaluation of the anti-Helicobacter pylori and cytotoxic properties of the antimicrobial substances from Lactobacillus acidophilus BK13 and Lactobacillus paracasei BK57 (Lactobacillus acidophilus BK13 and Lactobacillus paracasei BK57 균주가 생산한 항균물질의 anti-Helicobacter pylori 활성 및 위장상피세포에 대한 세포독성 평가)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.156-168
    • /
    • 2015
  • The objective of this study is to investigate the anti-Helicobacter pylori and anti-cancer activities of the live cells (LC), cell-free culture supernatants (CFCS), and bacteriocin solution (BS) obtained from Lactobacillus acidophilus BK13 and Lactobacillus paracasei BK57 strains. After incubation for 30 h in MRS broth, the concentration of lactic acid produced by L. paracasei BK57 ($155.9{\pm}10.2mM$) was higher than in MRS broth using L. acidophilus BK13 ($126.8{\pm}7.9mM$). Maximum bacteriocin activity (128 AU/ml) of BK13 strain was observed after 30 h of cultivation at $37^{\circ}C$, however its magnitude was significantly lower than that of BK57 strain (256 AU/ml). The LC of L. acidophilus BK13 and L. paracasei BK57 were able to inhibit the growth of H. pylori ATCC 43504 at different incubation times, depending on the initial inoculum of the LAB. These CFCS and BS obtained from BK13 and BK57 strains dramatically inhibited the growth, adhesive ability, and enzymatic activity of H. pylori. Meanwhile, the anti-cancer effect of the lactic acid from L. acidophilus BK13 and L. paracasei BK57 strains on AGS cells had significant differences with the control group. Therefore, these antagonistic substances-producing strains are potentially useful as new potential antimicrobial agents for the management and prevention of H. pylori infections.

In Vitro Evaluation of Probiotic Properties of Two Novel Probiotic Mixtures, Consti-Biome and Sensi-Biome

  • You Jin Jang;Bonggyu Min;Jong Hyun Lim;Byung-Yong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1149-1161
    • /
    • 2023
  • Changes in the gut microbiome cause recolonization by pathogens and inflammatory responses, leading to the development of intestinal disorders. Probiotics administration has been proposed for many years to reverse the intestinal dysbiosis and to enhance intestinal health. This study aimed to evaluate the inhibitory effects of two newly designed probiotic mixtures, Consti-Biome and Sensi-Biome, on two enteric pathogens Staphylococcus aureus and Escherichia coli that may cause intestinal disorders. Additionally, the study was designed to evaluate whether Consti-Biome and Sensi-Biome could modulate the immune response, produce short-chain fatty acids (SCFAs), and reduce gas production. Consti-Biome and Sensi-Biome showed superior adhesion ratios to HT-29 cells and competitively suppressed pathogen adhesion. Moreover, the probiotic mixtures decreased the levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6 and IL-1β. Cell-free supernatants (CFSs) were used to investigate the inhibitory effects of metabolites on growth and biofilms of pathogens. Consti-Biome and Sensi-Biome CFSs exhibited antimicrobial and anti-biofilm activity, where microscopic analysis confirmed an increase in the number of dead cells and the structural disruption of pathogens. Gas chromatographic analysis of the CFSs revealed their ability to produce SCFAs, including acetic, propionic, and butyric acid. SCFA secretion by probiotics may demonstrate their potential activities against pathogens and gut inflammation. In terms of intestinal symptoms regarding abdominal bloating and discomfort, Consti-Biome and Sensi-Biome also inhibited gas production. Thus, these two probiotic mixtures have great potential to be developed as dietary supplements to alleviate the intestinal disorders.

Antioxidant Activities of Dianthus chinensis L. Extract and Its Inhibitory Activities against Nitric Oxide Production and Cancer Cell Growth and Adhesion (패랭이꽃 추출물의 항산화, Nitric Oxide 생성저해, 암세포 성장 및 부착 억제 활성)

  • Lee, Jungjae;Seo, Younggeo;Lee, Junho;Ju, Jihyeung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • The aim of the study was to investigate the antioxidant content and activities of ethanol extract of the edible flower Dianthus chinensis L. (DCE) as well as its inhibitory activities against nitric oxide (NO) production in macrophages and growth and adhesion of human cancer cells. The total polyphenol, flavonoid, and carotenoid levels of DCE were 19.0 mg gallic acid equivalent/g, 65.7 mg quercetin equivalent/g, and $95.0{\mu}g/g$, respectively. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power of DCE at a concentration of $1,000{\mu}g/mL$ were 44% and 51%, respectively. In lipopolysaccharide-treated RAW 264.7 macrophages, treatment with DCE at concentrations of 500 and $1,000{\mu}g/mL$ resulted in significantly reduced NO levels (to 7~23% of the control). In H1299 human lung carcinoma cells and HCT116 human colorectal carcinoma cells, treatment with DCE at concentrations of 250, 500, and $1,000{\mu}g/mL$ resulted in dose-dependent growth inhibition. DCE was also effective in inhibiting adhesion of both H1299 cells (to 55% of the control at concentration of $1,000{\mu}g/mL$) and HCT116 (to 26~40% of the control at concentrations of 250, 500, and $1,000{\mu}g/mL$). These results suggest that DCE exerts antioxidant, anti-inflammatory, and anti-cancer activities in vitro.