DOI QR코드

DOI QR Code

Antioxidant Activities of Dianthus chinensis L. Extract and Its Inhibitory Activities against Nitric Oxide Production and Cancer Cell Growth and Adhesion

패랭이꽃 추출물의 항산화, Nitric Oxide 생성저해, 암세포 성장 및 부착 억제 활성

  • Lee, Jungjae (Department of Food and Nutrition, Chungbuk National University) ;
  • Seo, Younggeo (Department of Food and Nutrition, Chungbuk National University) ;
  • Lee, Junho (Department of Food and Nutrition, Chungbuk National University) ;
  • Ju, Jihyeung (Department of Food and Nutrition, Chungbuk National University)
  • 이중재 (충북대학교 식품영양학과) ;
  • 서영교 (충북대학교 식품영양학과) ;
  • 이준호 (충북대학교 식품영양학과) ;
  • 주지형 (충북대학교 식품영양학과)
  • Received : 2015.11.02
  • Accepted : 2016.01.05
  • Published : 2016.01.31

Abstract

The aim of the study was to investigate the antioxidant content and activities of ethanol extract of the edible flower Dianthus chinensis L. (DCE) as well as its inhibitory activities against nitric oxide (NO) production in macrophages and growth and adhesion of human cancer cells. The total polyphenol, flavonoid, and carotenoid levels of DCE were 19.0 mg gallic acid equivalent/g, 65.7 mg quercetin equivalent/g, and $95.0{\mu}g/g$, respectively. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power of DCE at a concentration of $1,000{\mu}g/mL$ were 44% and 51%, respectively. In lipopolysaccharide-treated RAW 264.7 macrophages, treatment with DCE at concentrations of 500 and $1,000{\mu}g/mL$ resulted in significantly reduced NO levels (to 7~23% of the control). In H1299 human lung carcinoma cells and HCT116 human colorectal carcinoma cells, treatment with DCE at concentrations of 250, 500, and $1,000{\mu}g/mL$ resulted in dose-dependent growth inhibition. DCE was also effective in inhibiting adhesion of both H1299 cells (to 55% of the control at concentration of $1,000{\mu}g/mL$) and HCT116 (to 26~40% of the control at concentrations of 250, 500, and $1,000{\mu}g/mL$). These results suggest that DCE exerts antioxidant, anti-inflammatory, and anti-cancer activities in vitro.

본 연구에서는 패랭이꽃의 항산화 성분 함량을 측정하고 패랭이꽃 에탄올 추출물의 항산화, 항염, 항암 활성을 in vitro 수준에서 평가하고자 하였다. 패랭이꽃의 총 폴리페놀, 총 플라보노이드, 총 카로티노이드 함량은 각각 19.0 mg GAE/g, 65.7 mg QE/g, $95.0{\mu}g/g$으로 측정되었다. 패랭이꽃 추출물($1,000{\mu}g/mL$)의 DPPH radical 소거 활성은 44.1%, 철환원력은 51.1%로 같은 농도의 ascorbic acid의 활성보다는 낮았지만 의미 있는 수준의 활성을 나타내었다. 패랭이꽃 추출물은 RAW 264.7 대식세포의 NO 생성을 대조구 대비 7~23% 수준으로 억제하는 농도 의존적 활성을 나타내었고, H1299 폐암세포와 HCT116 대장암세포의 성장을 대조구 대비 각각 2~81%(48~96시간 처리 시점)와 10~80%(72시간 처리시점)로 억제하는 농도 의존적 활성 또한 나타내었다. 패랭이꽃 추출물은 암세포의 부착을 억제하는 활성이 H1299와 HCT116 세포에서 모두 나타났으나 HCT116 세포에서 나타난 활성($250{\sim}1,000{\mu}g/mL$ 이상의 농도 처리시 대조구 대비 26~40% 부착 수준)이 H1299 세포에서 나타난 활성($1,000{\mu}g/mL$ 농도 처리 시 대조구 대비 55% 부착 수준)보다 컸다. 이상의 연구 결과를 통하여 패랭이꽃 추출물은 항산화 성분 함량 및 활성이 유의미한 수준이고 세포 수준의 항염 및 항암 활성을 가지는 것으로 생각된다. 앞으로 이와 같은 연구 결과가 in vivo 수준에서 재현되는지 여부를 검증하고 관련 기전을 탐색하는 심도 있는 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Lee CB. 2003. Coloured flora of Korea. 1st ed. Hyang Mun Sa, Seoul, Korea. p 317.
  2. Park YJ, Kim HJ, Byun KS, Kim SJ, Chon SY, Heo BG, Lee SS, Park SH. 2005. Kinds and characteristics of edible flowers marketed as food material in Korea. Korean J Community Living Sci 16: 47-57.
  3. Oh SD. 2003. A literature review on the cooking methods and actual applications of edible flower. MS Thesis. Kyung Hee University, Seoul, Korea. p 4-10,31-56.
  4. Lee SY. 2014. Studies on functional components and preference in edible flowers. MS Thesis. Sangji University, Wonju, Korea. p 65.
  5. Li HY, Koike K, Ohmoto T, Ikeda K. 1993. Dianchinenosides A and B, two new saponins from Dianthus chinensis. J Nat Prod 56: 1065-1070. https://doi.org/10.1021/np50097a009
  6. Li HY, Koike K, Ohmoto T. 1994. Triterpenoid saponins from Dianthus chinensis. Phytochemistry 35: 751-756. https://doi.org/10.1016/S0031-9422(00)90599-5
  7. Nho KJ, Chun JM, Kim HK. 2012. Ethanol extract of Dianthus chinensis L. induces apoptosis in human hepatocellular carcinoma HepG2 cells in vitro. Evidence-Based Complementary Altern Med 2012: 573527.
  8. Kim CJ, Kang BH, Ryoo IJ, Park DJ, Lee HS, Kim YH, Yoo ID. 1996. Screening of biologically active compounds from various weeds. Agric Chem Biotechnol 39: 409-413.
  9. Lim JD. 2000. Expression of tobacco glutathione S-trasferase gene in transgenic Dianthus superbus L. MS Thesis. Kangwon National University, Chuncheon, Korea. p 44.
  10. Choi YH, Jung HS, Cho MJ, Song MY, Seo HH, Moh SH. 2014. Efficacy of callus induced from Ullengdo niche plants for skin protection. J Korea Academia-Industrial Cooperation Soc 15: 5070-5077. https://doi.org/10.5762/KAIS.2014.15.8.5070
  11. Tong Y, Luo JG, Wang R, Wang XB, Kong LY. 2012. New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus. Bioorg Med Chem Lett 22: 1908-1911. https://doi.org/10.1016/j.bmcl.2012.01.058
  12. Reid-Adam J, Yang N, Song Y, Cravedi P, Li XM, Heeger P. 2013. Immunosuppressive effects of the traditional Chinese herb Qu Mai on human alloreactive T cells. Am J Transplant 13: 1159-1167. https://doi.org/10.1111/ajt.12180
  13. Shin JA, Kim JJ, Choi ES, Shim JH, Ryu MH, Kwon KH, Park HM, Seo JY, Lee SY, Lim DW, Cho NP, Cho SD. 2013. In vitro apoptotic effects of methanol extracts of Dianthus chinensis and Acalypha australis L. targeting specificity protein 1 in human oral cancer cells. Head Neck 35: 992-998. https://doi.org/10.1002/hed.23072
  14. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  15. Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454: 428-435. https://doi.org/10.1038/nature07201
  16. McGeer PL, McGeer EG. 2004. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 1035: 104-116. https://doi.org/10.1196/annals.1332.007
  17. Coussens LM, Werb Z. 2002. Inflammation and cancer. Nature 420: 860-867. https://doi.org/10.1038/nature01322
  18. Libby P. 2006. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 83: 456S-460S. https://doi.org/10.1093/ajcn/83.2.456S
  19. Statistics Korea. 2014. 2013 cause of death statistics. Statistics Korea, Daejeon, Korea. p 9-10.
  20. Peter B, Bernard L. 2008. World Cancer Report 2008. International Agency for Research on Cancer, Geneva, Switzerland. p 42-43.
  21. World Health Organization. 2012. World health statistics 2012. World Health Organization, Geneva, Switzerland. p 80-81.
  22. Ministry of Health and Welfare. 2012. Ministry of health and welfare statistical year book 2012. Ministry of Health & Welfare, Seoul, Korea. p 8-9.
  23. Amin AR, Kucuk O, Khuri FR, Shin DM. 2009. Perspectives for cancer prevention with natural compounds. J Clin Oncol 27: 2712-2725. https://doi.org/10.1200/JCO.2008.20.6235
  24. Bode AM, Dong Z. 2009. Cancer prevention research-then and now. Nat Rev Cancer 9: 508-516. https://doi.org/10.1038/nrc2646
  25. McCullough ML, Giovannucci EL. 2004. Diet and cancer prevention. Oncogene 23: 6349-6364. https://doi.org/10.1038/sj.onc.1207716
  26. Singleton VL, Rossi Jr JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  27. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  28. Wellburn AR. 1994. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144: 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  29. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT -Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  30. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  31. Ju J, Kwak Y, Hao X, Yang CS. 2012. Inhibitory effects of calcium against intestinal cancer in human colon cancer cells and $Apc^{Min/+}$ mice. Nutr Res Pract 6: 396-404. https://doi.org/10.4162/nrp.2012.6.5.396
  32. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [$^{15}N$]nitrate in biological fluids. Anal Biochem 126: 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  33. Matsuura N, Miyamae Y, Yamane K, Nagao Y, Hamada Y, Kawaguchi N, Katsuki T, Hirata K, Sumi S, Ishikawa H. 2006. Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells. J Nutr 136: 842S-846S. https://doi.org/10.1093/jn/136.3.842S
  34. National Academy of agricultural Science. 2009. Tables of food functional composition. 1st ed. Rural Development Administration, Suwon, Korea. p 201.
  35. Kim SM, Kim DY, Park HR, Seo JH, Yeom BY, Jin YJ, Pyo YH. 2014. Screening the antioxidant components and antioxidant activity of extracts derived from five varieties of edible spring flowers. Korean J Food Sci Technol 46: 13-18. https://doi.org/10.9721/KJFST.2014.46.1.13
  36. Lee MK, Park JS, Song HJ, Chon SU. 2014. Effects of polyphenol and catechin levels on antioxidant activity of several edible flower extracts. Korean J Plant Res 27: 111-118. https://doi.org/10.7732/kjpr.2014.27.2.111
  37. Park YH, Lim SH, Kim HY, Park MH, Lee KJ, Kim KH, Kim YG, Ahn YS. 2011. Biological activities of extracts from flowers of Angelica gigas Nakai. J Korean Soc Food Sci Nutr 40: 1079-1085. https://doi.org/10.3746/jkfn.2011.40.8.1079
  38. Willeaume V, Kruys V, Mijatovic T, Huez G. 1995. Tumor necrosis factor-$\alpha$ production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J Inflamm 46: 1-12.
  39. Su YW, Chiou WF, Chao SH, Lee MH, Chen CC, Tsai YC. 2011. Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-${\kappa}B$ and AP-1 signaling pathways. Int Immunopharmacol 11: 1166-1172. https://doi.org/10.1016/j.intimp.2011.03.014
  40. Yang DJ, Chang YY, Lin HW, Chen YC, Hsu SH, Lin JT. 2014. Inhibitory effect of litchi (Litchi chinensis Sonn.) flower on lipopolysaccharide-induced expression of proinflammatory mediators in RAW264.7 cells through NF-${\kappa}B$, ERK, and JAK2/STAT3 inactivation. J Agric Food Chem 62: 3458-3465. https://doi.org/10.1021/jf5003705
  41. Hu C, Kitts DD. 2005. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine 12: 588-597. https://doi.org/10.1016/j.phymed.2003.12.012
  42. Ho SC, Hwang LS, Shen YJ, Lin CC. 2007. Suppressive effect of a proanthocyanidin-rich extract from longan (Dimocarpus longan Lour.) flowers on nitric oxide production in LPS-stimulated macrophage cells. J Agric Food Chem 55: 10664-10670. https://doi.org/10.1021/jf0721186
  43. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  44. Klaunig JE, Kamendulis LM. 2004. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44: 239-267. https://doi.org/10.1146/annurev.pharmtox.44.101802.121851
  45. An BJ, Lee CE, Son JH, Lee JY, Choi GH, Park TS. 2005. Antioxidant, anticancer and tyrosinase inhibition activities of extracts from Rhododendron mucronulatum T. J Korean Soc Appl Biol Chem 48: 280-284.

Cited by

  1. Dimethyl Sulfoxide Extract of Dianthus carmelitarum Induces S Phase Arrest and Apoptosis in Human Colon Cancer Cells vol.71, pp.7, 2016, https://doi.org/10.1080/01635581.2019.1598563