DOI QR코드

DOI QR Code

Evaluation of the anti-Helicobacter pylori and cytotoxic properties of the antimicrobial substances from Lactobacillus acidophilus BK13 and Lactobacillus paracasei BK57

Lactobacillus acidophilus BK13 and Lactobacillus paracasei BK57 균주가 생산한 항균물질의 anti-Helicobacter pylori 활성 및 위장상피세포에 대한 세포독성 평가

  • Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University)
  • 임은서 (동명대학교 식품영양학과)
  • Received : 2015.06.03
  • Accepted : 2015.06.25
  • Published : 2015.06.30

Abstract

The objective of this study is to investigate the anti-Helicobacter pylori and anti-cancer activities of the live cells (LC), cell-free culture supernatants (CFCS), and bacteriocin solution (BS) obtained from Lactobacillus acidophilus BK13 and Lactobacillus paracasei BK57 strains. After incubation for 30 h in MRS broth, the concentration of lactic acid produced by L. paracasei BK57 ($155.9{\pm}10.2mM$) was higher than in MRS broth using L. acidophilus BK13 ($126.8{\pm}7.9mM$). Maximum bacteriocin activity (128 AU/ml) of BK13 strain was observed after 30 h of cultivation at $37^{\circ}C$, however its magnitude was significantly lower than that of BK57 strain (256 AU/ml). The LC of L. acidophilus BK13 and L. paracasei BK57 were able to inhibit the growth of H. pylori ATCC 43504 at different incubation times, depending on the initial inoculum of the LAB. These CFCS and BS obtained from BK13 and BK57 strains dramatically inhibited the growth, adhesive ability, and enzymatic activity of H. pylori. Meanwhile, the anti-cancer effect of the lactic acid from L. acidophilus BK13 and L. paracasei BK57 strains on AGS cells had significant differences with the control group. Therefore, these antagonistic substances-producing strains are potentially useful as new potential antimicrobial agents for the management and prevention of H. pylori infections.

Lactobacillus acidophilus BK13과 Lactobacillus paracasei BK57 균주로부터 얻은 세포, 배양상등액 및 박테리오신 용액의 anti-Helicobacter pylori 활성과 위장상피세포에 대한 세포독성을 평가하였다. 실험균주를 MRS 배지 상에서 30시간 배양한 결과, L. acidophilus BK57 ($126.8{\pm}7.9mM$) 보다 L. paracasei BK57 ($155.9{\pm}7.9mM$)가 더 많은 양의 유산을 생산하였다. 또한, BK13 균주의 최대 박테리오신 활성(128 AU/ml)은 $37^{\circ}C$에서 30시간 배양 후 관찰되었으나, 이는 BK57의 활성(256 AU/ml) 보다는 낮았다. BK13 및 BK57 균주의 살아있는 세포를 H. pylori와 혼합 배양한 결과, 유산균의 초기균수에 의존하여 H. pylori의 저해효과가 나타났다. 게다가 BK13과 BK57로부터 얻은 배양상등액과 박테리오신은 H. pylori의 성장을 억제할 뿐만 아니라 위장상피세포에 대한 부착력과 urease 활성도 저해하였다. 한편, 이러한 균주들이 생산한 유산은 위암세포에 대한 세포독성 효과가 대조구보다 유의한 수준으로 높게 나타났다. 따라서 BK13과 BK57 균주의 항균물질은 위장질환의 원인균인 H. pylori를 저해시키는데 효과적이므로 이들 유산균은 H. pylori 감염으로부터 위장을 보호하는데 유용할 것으로 사료된다.

Keywords

References

  1. Aiba, Y., Suzuki, N., Kabir, A.M., Takagi, A., and Koga, Y. 1998. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am. J. Gastroenterol. 93, 2097-2101. https://doi.org/10.1111/j.1572-0241.1998.00600.x
  2. Aslim, B., Onbasili, D., and Yuksekdag, Z. 2011. Determination of lactic acid production and antagonistic activity against Helicobacter pylori in L. delbrueckii subsp. bulgaricus and S. thermophilus strains. Kafkas Univ. Vet. Fak. Derg. 17, 609-614.
  3. Atanassova, M., Choiset, Y., Dalgalarrondo, M., Chobert, J.M., Dousset, X., Ivanova, I., and Haertle, T. 2003. Isolation and partial biochemical characterization of a proteinaceouos antibacteria and anti-yeast compound produced by Lactobacillus paracasei subsp. paracasei strain M3. Int. J. Food Microbiol. 87, 63-73. https://doi.org/10.1016/S0168-1605(03)00054-0
  4. Boirivant, M. and Strober, W. 2007. The mechanisms of action of probiotics. Curr. Opin. Gastroenterol. 23, 679-692. https://doi.org/10.1097/MOG.0b013e3282f0cffc
  5. Boyanova, L., Stephanova-Kondratenko, M., and Mitov, I. 2009. Anti-Helicobacter pylori activity of Lactobacillus delbrueckii subsp. bulgaricus strains: preliminary report. Lett. Appl. Microbiol. 48, 579-584. https://doi.org/10.1111/j.1472-765X.2009.02571.x
  6. Brown, L.M. 2000. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol. Rev. 22, 283-297. https://doi.org/10.1093/oxfordjournals.epirev.a018040
  7. Brul, S. and Coote, P. 1999. Preservative agents in foods: mode of action and microbiol resistance mechanisms. Int. J. Food Microbiol. 50, 1-17. https://doi.org/10.1016/S0168-1605(99)00072-0
  8. Cave, D.R. 1997. How is Helicobacter pylori transmitted? Gasroenterology 113, S9-S14. https://doi.org/10.1016/S0016-5085(97)80004-2
  9. Cellini, L. and Donelli, G. 2000. Virulence factors of Helicobacter pylori. Microb. Ecol. Health. D. 2, 259-262.
  10. Chen, X., Liu, X.M., Tian, F., Zhang, Q., Zhang, H.P., Zhang, H., and Chen, W. 2011. Antagonistic activities of lactobacilli against Helicobacter pylori growth and infection in human gastric epithelial cells. J. Food Sci. 71, M9-M14.
  11. Coconnier, M.H,, Lievin, V., Hemery, E., and Servin, A. 1998. Antagonistic activity against Helicobacter pylori infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl. Environ. Microbiol. 64, 4573-4580
  12. De Vuyst, L. and Leroy, F. 2007. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. J. Mol. Microbiol. Biotechnol. 13, 194-199. https://doi.org/10.1159/000104752
  13. De Vuyst, L., Makras, L., Avonts, L., Holo, H., Yi, Q., Servin, A., Fayol-Messaoudi, D., Gerger, C., Zoumpopoulou, G., Tsakalidou, E., et al. 2004. Antimicrobial potential of probiotic or potentially probiotic lactic acid bacteria, the first results of the international European research project PROPATH of the PROEUHEALTH cluster. Microb. Ecol. Health. D. 16, 125-130. https://doi.org/10.1080/08910600410032303
  14. Egan, B.J., Katicic, M., O'onnor, H.J., and O'orain, C.A. 2007. Treatment of Helicobacter pylori. Helicobacter 12, 31-37. https://doi.org/10.1111/j.1523-5378.2007.00538.x
  15. Fichera, G.A. and Giese, G. 1994. Non-immunologically-mediated cytotoxicity of Lactobacillus casei and its derivative peptidoglycan against tumor cell lines. Cancer Lett. 85, 93-103. https://doi.org/10.1016/0304-3835(94)90244-5
  16. Genta, R.M., Gurer, I.E., Graham. D.Y., Krishnan, B., Sequra, A.M., Gutierrez, O., Kim, J.G., and Burchette, J.L. 1996. Adherence of Helicobacter pylori to areas of incomplete intestinal metaplasia in the gatric mucosa. Gastroenterology 111, 1206-1211. https://doi.org/10.1053/gast.1996.v111.pm8898634
  17. Gotteland, M., Brunser, O., and Cruchet, S. 2006. Systematic review: are probiotics useful in controlling gastric colonization by Helicobacter pylori? Aliment Pharmacol. Ther. 23, 1077-1086. https://doi.org/10.1111/j.1365-2036.2006.02868.x
  18. Hamilton-Miller, J.M.T. 2003. The role of probiotics in the treatment and prevention of Helicobacter pylori infection. Int. J. Antimicrob. Agents 22, 360-366. https://doi.org/10.1016/S0924-8579(03)00153-5
  19. Hemaiswarya, S., Raja, R., Ravikumar, R., and Carvalho, I.S. 2013. Mechanism of action of probiotics. Braz. Arch. Biol. Technol. 56, 113-119. https://doi.org/10.1590/S1516-89132013000100015
  20. Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. https://doi.org/10.1128/jb.173.12.3879-3887.1991
  21. Joo, N.E., Ritchie, K., Kamarajan, P., Miao, D., and Kapila, Y.L. 2012. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 1, 295-305. https://doi.org/10.1002/cam4.35
  22. Kaur, B., Balgir, P.P., Mittu, B., Kumar, B., and Garg, N. 2013. Biomedical applications of fermenticin HV6b isolated from Lactobacillus feremtum HV6b MTCC 10770. BioMed Res. Int. 2013, 1-8.
  23. Kim, T.S., Hur, J.W., Yu, M.A., Cheigh, C.I., Kim, K.N., Hwang, J.K., and Pyun, Y.R. 2003. Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J. Food Prot. 66, 3-12. https://doi.org/10.4315/0362-028X-66.1.3
  24. Klaenhammer, T.R. 1988. Bacteirocins of lactic acid bacteria. Biochimie 70, 337-349. https://doi.org/10.1016/0300-9084(88)90206-4
  25. Kusters, J.G., Van Vliet, A.H.M., and Kuipers, E.J. 2006. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 19, 449-490. https://doi.org/10.1128/CMR.00054-05
  26. Lesbros-Pantoflickova, D., Corthesy-Theulaz, I., and Blum, A.L. 2007. Helicobacter pylori and probiotics. J. Nutr. 137, 812S-818S. https://doi.org/10.1093/jn/137.3.812S
  27. Lim, S.M. 2014. Anti-Helicobacter pylori activity of antimicrobial substances produced by lactic acid bacteria isolated from Baikkimchi. J. Kor. Soc. Appl. Biol. Chem. 57, 621-630. https://doi.org/10.1007/s13765-014-4198-6
  28. Lin, W.H., Lin, C.K., Sheu, S.J., Hwang, C.F., Ye, W.T., Hwang, W.Z., and Tsen, H.Y. 2009. Antagonistic activity of spent culture supernatants of lactic acid bacteria against Helicobacter pylori growth and infection in human gastric epithelial AGS cells. J. Food Sci. 74, M225-M230. https://doi.org/10.1111/j.1750-3841.2009.01194.x
  29. Lorca, G.L., Wadstrom, T., Valdez, G.F., and Ljungh, A. 2001. Lactobacillus acidophilus autolysins inhibit Helicobacter pylori in vitro. Curr. Microbiol. 42, 39-44. https://doi.org/10.1007/s002840010175
  30. Luo, Y.Q., Teng, J.B., Pan, B.R., and Zhang, X.Y. 1999. Liver disease and Helicobacter. World J. Gastroenterol. 5, 334-338.
  31. Manjunath, N. and Ranganathan, B. 1989. A cytotoxic substance produced by a wild culture of Lactobacillus casei D-34 against tumor cells. Indian J. Exp. Biol. 27, 141-145.
  32. Michetti, P., Dorta, G., Wiesel, P.H., Brassart, D., Verdu, E., Herranz, M., Felley, C., Porta, N., Felley, C., Porta, N., et al. 1999. Effect of whey-based culture supernatant of Lactobacillus acidophilus (johnsonii) La1 on Helicobacter pylori infection in humans. Digestion 60, 203-209. https://doi.org/10.1159/000007660
  33. Midolo, P.D., Lambert, J.R., Hull, R., Luo, F., and Grayson, M.L. 1995. In vitro inhibition of Helicobacter pylori NCTC 11637 by organic acids and lactic acid bacteria. J. Appl. Bacteriol. 79, 475-479. https://doi.org/10.1111/j.1365-2672.1995.tb03164.x
  34. Moll, G.N., Konings, W.N., and Driessen, A.J.M. 1999. Bacteriocins: mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek 76, 185-198. https://doi.org/10.1023/A:1002002718501
  35. Oelschlaeger, T.A. 2010. Mechanisms of probiotic actions - A review. Int. J. Med. Microbiol. 300, 57-62. https://doi.org/10.1016/j.ijmm.2009.08.005
  36. Pacifico, L., Osborn, J.F., Bonci, E., Romaggioli, S., Baldini, R., and Chiesa, C. 2014. Probiotics for the treatment of Helicobacter pylori infection in children. World J. Gastroenterol. 20, 673-683. https://doi.org/10.3748/wjg.v20.i3.673
  37. Powell, J.E., Witthuhn, R.C., Todorov, D.S., and Dicks, L.M.T. 2007. Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus planatrum ST8KF. Int. Dairy J. 17, 190-198. https://doi.org/10.1016/j.idairyj.2006.02.012
  38. Rafter, J. 2002. Lactic acid bacteria and cancer: mechanistic perspective. Br. J. Nutr. 88, S89-S94. https://doi.org/10.1079/BJN2002633
  39. Sadeghi-Aliabadi, H., Mohammadi, F., Fazeli, H., and Mirlohi, M. 2014. Effects of Lactobacillus planatrum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. Iran J. Basic Med. Sci. 17, 815-819.
  40. Savadogo, A., Ouattara, C.A.T., Bassole, I.H.N., and Traore, S.A. 2006. Bacteriocins and lactic acid bacteria - a minireview. Afr. J. Biotechnol. 5, 678-683.
  41. Servin, A.L. and Coconnier, M.H. 2003. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Cl. Ga. 17, 741-754. https://doi.org/10.1016/S1521-6918(03)00052-0
  42. Settanni, L., Valmorri, S., Suzzi, G., and Corsetti, A. 2008. The role of environmental factors and medium composition on bacteriocin like inhibitory substances (BLIS) production by Enterococcus mundtii strains. Food Microbiol. 25, 722-728. https://doi.org/10.1016/j.fm.2008.01.011
  43. Sevda, E.R., Koparal, A.T., and Kivang, M. 2015. Cytotoxic effects of various lactic acid bacteria on Caco-2 cells. Turk. J. Biol. 39, 23-30. https://doi.org/10.3906/biy-1402-62
  44. Sgouras, D., Maragkoudakis, P., Petraki, K., Martinez-Gonzalez, B., Eriotou, E., Michopoulos, S., Kalantzopoulos, G., Tsakalidou, E., and Mentis, A. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl. Environ. Microbiol. 70, 518-526. https://doi.org/10.1128/AEM.70.1.518-526.2004
  45. Shaikh, F., Abhinand, P.A., and Ragunath, P.K. 2012. Identification and characterization of Lactobacillus salavarius bacteriocins and its relevance in cancer therapeutics. Bioinformation 8, 589-594. https://doi.org/10.6026/97320630008589
  46. Sutton, P. 2001. Helicobacter pylori vaccines and mechanisms of effective immunity: Is mucus the key? Immunol. Cell Biol. 79, 67-73. https://doi.org/10.1046/j.1440-1711.2001.00977.x
  47. Todorov, S.D. and Dicks, L.M. 2005. Optimization of bacteriocin ST311LD production by Enterococcus faecium ST311LD, isolated from spoiled black olives. J. Microbiol. 43, 370-374.
  48. Tsai, C.C., Huang, L.F., Lin, C.C., and Tsen, H.Y. 2004. Antagonistic activity against Helicobacter pylori infection in vitro by a strain of Enterococcus faecium TM39. Int. J. Food Microbiol. 96, 1-12. https://doi.org/10.1016/j.ijfoodmicro.2003.10.019
  49. Wang, K.Y., Li, S.N., Kiu, C.S., Perng, D.S., Su, Y.C., Wu, D.C., Jan, C.M., Lai, C.H., Wang, T.N., and Wang, W.M. 2004. Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. Am. J. Clin. Nutr. 80, 737-741.
  50. Wang, G., Zhao, Y., Tian, F., Jin, X., Chen, H., Liu, X., Zhang, Q., Zhao, J., Chen, Y., Zhang, H., et al. 2014. Screening of adhesive lactobacilli with antagonistic activity against Campylobacter jejuni. Food Control 44, 49-57. https://doi.org/10.1016/j.foodcont.2014.03.042
  51. Wee, Y.J., Kim, J.N., and Ryu, H.W. 2006. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44, 163-172.
  52. Yoon, Y.H. and Won, B.R. 2002. Antagonism against Helicobacter pylori and proteolysis of Lactobacillus helveticus CU631 and strain identification. Asian-Aust J. Anim. Sci. 15, 1057-1065. https://doi.org/10.5713/ajas.2002.1057
  53. Zheng, H., Shah, P.K., and Audus, K.L. 1996. Evaluation of antiulcer agents with a human adenocarcinoma cell line (AGS). Int. J. Pharm. 129, 103-112. https://doi.org/10.1016/0378-5173(95)04271-7