• 제목/요약/키워드: Anti-Porosity

검색결과 26건 처리시간 0.022초

Methodological approach of evaluation on prefabrication primers for steel structures

  • Chung, Sung-Wook;Hyun, Jeong-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.707-717
    • /
    • 2021
  • To the date, shipbuilding companies have applied shop primer coating which protects the steel surface from global oxidization in environment. Proper shop primer requires either anti-corrosion ability during construction or anti-porosity ability during welding, and those properties contradict to each other. This report tried to derive an optimizing parameter on these conflicting properties to select a proper shop primer. First, sufficient amounts of the natural salt spray tests were carried out to achieve a series of data for the anti-corrosion ability. Second, lots of T-joint fillet welding test were performed to evaluate the trapped porosity formed in the weld pool. According to the experimental data, we could achieve either the rust-formation rate or the porosity-formation rate, then, each rate was generalized as formulae. Then, we tried to combine these conflicting properties to decide an optimum shop primer.

Vibrational behavior of porous composite laminated plates using four unknown integral shear deformation theory

  • Hayat Saidi;Abdelouahed Tounsi;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi;Firas Ismail Salman Al-Juboori
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.249-271
    • /
    • 2024
  • In this scientific work, an analytical solution for the dynamic analysis of cross-ply and angle-ply laminated composite plates is proposed. Due to technical issues during the manufacturing of composite materials, porosities and micro-voids can be produced within the composite material samples, which can carry on to a reduction in the density and strength of the materials. In this research, the laminated composite plates are assumed to have new distributions of porosities over the plate cross-section. The structure is modeled using a simple integral shear deformation theory in which the transverse shear deformation effect is included. The governing equations of motion are obtained employing the principle of Hamilton's. The solution is determined via Navier's approach. The Maple program is used to obtain the numerical results. In the numerical examples, the effects of geometry, ratio, modulus ratio, fiber orientation angle, number of layers and porosity parameter on the natural frequencies of symmetric and anti-symmetric laminated composite plates is presented and discussed in detail. Also, the impacts of the kinds of porosity distribution models on the natural frequencies of symmetric and anti-symmetric laminated composite plates are investigated.

유압실린더 세라믹코팅 기공률 최소화 방안 (Minimization of Porosity in Ceramic Coating on a Hydraulic Cylinder)

  • 정영호;문승재;유호선
    • 플랜트 저널
    • /
    • 제6권4호
    • /
    • pp.63-71
    • /
    • 2010
  • The best way to prevent the corrosion of piston rod is a selection of quality of the material and method of construction which minimize the porosity. The high velocity oxy fuel(HVOF) method, which generates lower porosity than existing plasma spray, was applied to ceramic laminated bond layer. Porosity percentage fell to bellow 2%, lower than that of plasma spray at 7%. Coating material of ceramic-coated main layer was selected as the $Cr_2O_3$ affiliation material, which is more dense than $Al_2O_3$ affiliation. To fill up the pores formed after the coating process, we sealed the bond layer and main layer. Sealing process was performed twice, once after the coating and once after the grinding. Upon the anti-corrosion test on the sealed sample and on the non-sealed sample, it is confirmed that the sealed sample was not corroded for 1,000 hours while the non-sealed sample was corroded within 48 hours.

  • PDF

우수한 대전방지 및 기계적 성질을 가지는 다공성 산화티탄-산화망간 세라믹스 제조 (Fabrication of porous titanium oxide-manganese oxide ceramics with enhanced anti-static and mechanical properties)

  • 유동수;황광택;김종영;정종열;백승우;심우영
    • 한국결정성장학회지
    • /
    • 제28권6호
    • /
    • pp.263-270
    • /
    • 2018
  • 최근 반도체, 디스플레이 제조장비용 세라믹소재로 대전방지 기능을 가지는 다공성 세라믹스가 시급히 요구되고 있다. 본 연구에서는 다공성 산화티탄-산화망간 기지상에 산화티탄 나노분말을 첨가하여 부분소결함으로써 $10^8-10^{10}$ ohm의 표면저항을 가지고 향상된 기계적 강도를 가지는 다공성 세라믹스를 제조하였다. 나노 크기의 산화티탄 분말을 첨가함으로써 입자 사이의 목 형성을 강화하였고, 그 결과 꺽임강도를 170 MPa(@기공률 15 %), 110 MPa(@기공률 31 %) 수준으로 증가시킬 수 있었다. 이는 P-25를 첨가하지 않았을 때의 꺽임강도(80 MPa @ 기공률 26 %)에 비하여 주목할만큼 증가한 값으로 단순한 기공률 감소가 아닌 목 형성등 미세구조 변화에 따른 것으로 판단된다. 개발 세라믹스를 적용한 OLED 유연소자 제조공정용 공기부상용 모듈을 제작하여 진공척의 성능을 평가하였다.

공간 내 부유한 바이러스에 대한 광촉매 TiO2가 코팅된 에어 필터의 항바이러스 효율 평가 (Evaluation of anti-viral efficiency of TiO2 coated air filter for airborn virus)

  • 박근영;박성재;구현본;김성준;황정호
    • 한국입자에어로졸학회지
    • /
    • 제15권4호
    • /
    • pp.173-182
    • /
    • 2019
  • Since airborne viruses have been known to aggravate indoor air quality, studies on the development of anti-viral air filter increase recently. In this study, the pressure drop and anti-viral efficiency of TiO2 coated ceramic ball filter were evaluated. After the filter being inserted into a commercial room air cleaner, chamber test with aerosolized bacteriophage MS2 was performed. The porosity of TiO2 coated ceramic ball filter was 0.85, and pressure drop was about 13 Pa for 1 m/s of air velocity. The anti-viral efficiency was about 93% when the reaction time was 25 minutes in a 1 ㎥ chamber.

Anti-slosh effect of a horizontal porous baffle in a swaying/rolling rectangular tank: Analytical and experimental approaches

  • George, Arun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.833-847
    • /
    • 2021
  • The horizontal porous baffle and its effect as an anti-slosh device have been investigated intensively in a swaying and rolling rectangular tank. To accurately assess the level at which porous baffles reduce liquid sloshing, the Matched Eigenfunction Expansion Method (MEEM) has been utilized as an analytical tool. The velocity potentials in the horizontal baffle-covered fluid region are expressed by the sum of the homogeneous and particular solutions to avoid solving the complex dispersion equation. By applying an equivalent linearized quadratic loss model, the nonlinear algebraic equation is derived and solved by implementing the Newton-Raphson iterative scheme. To prove the validity of the present theoretical model, a series of experiments have been conducted with different centered horizontal porous baffles with varying porosities and submerged depths in a swaying and rolling rectangular tank. Reasonably good agreements are obtained regarding the analytical solutions and the experiment's findings. The influence of porosity, submerged depth, and length of a centered horizontal porous baffle on anti-slosh performance have been analyzed, especially at resonance modes. The developed predictive tool can potentially provide guidelines for optimal design of the horizontal porous baffle.

Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES-STiO2) ultrafiltration membranes for fouling mitigation

  • Ayyaru, Sivasankaran;Ahn, Young-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.199-209
    • /
    • 2018
  • Polyethersulfone (PES)/sulfonated $TiO_2$ ($STiO_2$) nanoparticles (NPs) UF blended membranes were fabricated with different loadings of $STiO_2$. The modified membranes exhibited significant improvement in surface roughness, porosity, and pore size when compared to the PES membrane. The $P-STiO_2$ 1 and $P-TiO_2$ 1 blended membranes exhibited higher water flux, approximately 102.4% and 62.6%, respectively, compared to PES. SPP-$STiO_2$ and $P-STiO_2$ showed lower Rir fouling resistance than the $P-TiO_2$ blended membrane. Overall, the $STiO_2$-blended membranes provide high hydrophilicity permeability, anti-fouling performance, and improved BSA rejection attributed to the hydrogen bonding force and more electrostatic repulsion properties of $STiO_2$.

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

펨토몰 농도의 옥시토신 검출을 위한 항체 기능성 UiO-66-(COOH)2 증폭형 표면 플라즈몬 공명 분석법 개발 (Antibody Functionalized UiO-66-(COOH)2 Amplified Surface Plasmon Resonance Analysis Method for fM Oxytocin)

  • 이명섭;남하영;박수연;정성화;이혜진
    • 공업화학
    • /
    • 제35권4호
    • /
    • pp.335-340
    • /
    • 2024
  • 본 논문에서는 UIO-66에 항체 기능성을 도입한 유무기 하이브리드 소재를 합성하고 이를 표면 플라즈몬 공명(surface plasmon resonance, SPR) 분석법에 접목하여 옥시토신과 같은 작은 분자를 검출하는 감도를 향상시키고자 하였다. 옥시토신은 암, 알츠하이머, 심부전증 진단에 중요한 생물학적 표지 펩타이드 분자로 알려져 있으며, 이를 수 펨토몰(femtomole, fM) 농도 수준까지 검출하기 위해 다공성이며 표면적이 우수한 metal organic frameworks 중 하나인 UiO-66-(COOH)2 소재를 신호증폭용으로 활용하면서 옥시토신에 특이적인 항체 페어를 이용하는 표면 샌드위치 분석법을 개발함으로써 선택성을 향상시키고자 하였다. 이를 위해 먼저 선정한 각 옥시토신 특이적 항체가 옥시토신에 대해 강하게 결합하는지 그리고 각 항체가 옥시토신의 서로 다른 결합사이트에 결합하는지를 실시간 SPR 분석법으로 확인하였다. 선정한 항체 중 한 개(예: anti-OXT [OTI5G4])를 SPR용 금 박막 칩 표면에 고정하고, 옥시토신을 흘려준 후, UiO-66-(COOH)2에 컨쥬게이션된 다른 항체(예: anti-OXT[4G11])를 순차적으로 흘려주어 표면에 샌드위치 복합체(anti-OXT[OTI5G4]/옥시토신/UiO-66-(COOH)2-anti-OXT[4G11])를 형성하였을 때 옥시토신 농도에 따라 SPR 신호가 변화하는 것을 실시간으로 모니터링하였다. 그 결과, UiO-66-(COOH)2를 사용하지 않았을 때 대비 약 백만 배 이상 감도를 증폭시켜 약 10 fM까지 검출 가능함을 보여주었다.

Effectiveness study of a cement mortar coating based on dune sand on the carbonation of concrete

  • Korichi, Youssef;Merah, Ahmed;Khenfer, Med Mouldi;Krobba, Benharzallah
    • Advances in concrete construction
    • /
    • 제13권4호
    • /
    • pp.315-325
    • /
    • 2022
  • Reinforced concrete structures are exposed throughout their lifetime to the phenomenon of carbonation, which considerably influences their durability by causing corrosion of the reinforcements. The fight against this phenomenon is usually ensured by anti-carbonation coatings which have the possibility of limiting the permeability to carbon dioxide or with coatings which absorb the CO2 present in the air. A coating with good crack-bridging (sealing) capacity will prevent water from entering through existing cracks in concrete. Despite the beneficial effect of these coatings, their durability decreases considerably over time with temperature and humidity. In order to use coatings made from local materials, not presenting any danger, available in abundance in our country, very economical and easy to operate is the main objective of this work. This paper aim is to contribute to the formulation of a corrected dune sand-based mortar as an anti-carbonation coating for concrete. The results obtained show that the cement mortar based on dune sand formulated has a very satisfactory compressive strength, a very low water porosity compared to ordinary cement mortar and that this mortar allows an improvement in the protection of the concrete against the carbonation of 60% compared to ordinary cement mortar based on alluvial sand. Moreover, the formulated cement mortars based on dune sand have good adhesion to the concrete support, their adhesion strengths are greater than 1.5MPa recommended by the standards.