Article

펨토몰 농도의 옥시토신 검출을 위한 항체 기능성 UiO-66-(COOH)2 증폭형 표면 플라즈몬 공명 분석법 개발

이명섭ㆍ남하영ㆍ박수연ㆍ정성화ㆍ이혜진[†]

경북대학교 화학과 (2024년 6월 19일 접수, 2024년 7월 19일 수정, 2024년 7월 22일 채택)

Antibody Functionalized UiO-66-(COOH)₂ Amplified Surface Plasmon Resonance Analysis Method for fM Oxytocin

Myungseob Lee, Ha-Young Nam, Su Yeon Park, Sung Hwa Jhung and Hye Jin Lee[†]

Department of Chemistry, Kyungpook National University, Daegu-city 41566, Republic of Korea (Received June 19, 2024; Revised July 19, 2024; Accepted July 22, 2024)

초 록

본 논문에서는 UIO-66에 항체 기능성을 도입한 유무기 하이브리드 소재를 합성하고 이를 표면 플라즈몬 공명(surface plasmon resonance, SPR) 분석법에 접목하여 옥시토신과 같은 작은 분자를 검출하는 감도를 향상시키고자 하였다. 옥 시토신은 암, 알츠하이머, 심부전증 진단에 중요한 생물학적 표지 펩타이드 분자로 알려져 있으며, 이를 수 펨토몰 (femtomole, fM) 농도 수준까지 검출하기 위해 다공성이며 표면적이 우수한 metal organic frameworks 중 하나인 UiO-66-(COOH)₂ 소재를 신호증폭용으로 활용하면서 옥시토신에 특이적인 항체 페어를 이용하는 표면 샌드위치 분석 법을 개발함으로써 선택성을 향상시키고자 하였다. 이를 위해 먼저 선정한 각 옥시토신 특이적 항체가 옥시토신에 대해 강하게 결합하는지 그리고 각 항체가 옥시토신의 서로 다른 결합사이트에 결합하는지를 실시간 SPR 분석법으로 확인하였다. 선정한 항체 중 한 개(예: anti-OXT [OTI5G4])를 SPR용 금 박막 칩 표면에 고정하고, 옥시토신을 흘려준 후, UiO-66-(COOH)₂에 컨쥬게이션된 다른 항체(예: anti-OXT[4G11])를 순차적으로 흘려주어 표면에 샌드위치 복합체 (anti-OXT[0TI5G4]/옥시토신/UiO-66-(COOH)₂-anti-OXT[4G11])를 형성하였을 때 옥시토신 농도에 따라 SPR 신호가 변 화하는 것을 실시간으로 모니터링하였다. 그 결과, UiO-66-(COOH)₂를 사용하지 않았을 때 대비 약 백만 배 이상 감도 를 증폭시켜 약 10 fM까지 검출 가능함을 보여주었다.

Abstract

In this paper, we synthesized organic and inorganic hybrid materials to introduce antibody functionality to UIO-66 and incorporated them into a surface plasmon resonance (SPR) assay to enhance the sensitivity of detecting small molecules such as oxytocin. A biological marker peptide called oxytocin may help in the diagnosis of heart failure, Alzheimer's disease, and cancer. To detect oxytocin at concentrations as low as a few femtomole (fM), we developed a surface sandwich assay utilizing a pair of oxytocin-specific antibodies for enhancing selectivity and one of metal organic frameworks [e.g., UiO-66-(COOH)₂] possessing high porosity and surface-area as a signal amplifier. Initially, real-time SPR assays were used to confirm that each selected oxytocin-specific antibody binds strongly to oxytocin and to different binding sites on oxytocin. One of these antibodies (e.g., anti-OXT[OTI5G4]) was immobilized on the surface of a thin gold chip. Upon sequential injecting of oxytocin and the other antibody (e.g., anti-OXT[4G11]) conjugated to UiO-66-(COOH)₂ onto the surface to form the surface sandwich complex of anti-OXT[OTI5G4]/oxytocin/UiO-66-(COOH)₂-anti-OXT[4G11]), SPR changes, which varied with oxytocin concentration, were then measured in real time. The results demonstrated that sensitivity was amplified by over a million-fold compared to assays without UiO-66-(COOH)₂, enabling oxytocin detection down to approximately 10 fM.

Keywords: UiO-66-(COOH)₂, Surface plasmon resonance, Oxytocin, Biomarker, Surface sandwich assay

[†] Corresponding Author: Kyungpook National University Department of Chemistry, Daegu-city 41566, Republic of Korea Tel: +82-53-950-5336 e-mail: hyejinlee@knu.ac.kr

pISSN: 1225-0112 eISSN: 2288-4505 @ 2024 The Korean Society of Industrial and Engineering Chemistry. All rights reserved.

1. 서 론

인간 몸 속의 대사물질, 호르몬, 핵산, 그리고 단백질과 같은 생물학 적 바이오마커들은 질병 진단에 있어 중요한 도구로 활용되고 있다[1, 2]. 특히 체내 단백질 바이오마커의 농도 변화는 암, 알츠하이머병, 파 킨슨병 등 다양한 질환의 (조기)진단 지표로 널리 사용되어왔으며 [3-7], 대사물질 및 호르몬과 같이 작은 분자의 경우도 진단 지표로 활 용되어 왔다[8,9]. 예를 들어 스테로이드 호르몬인 코르티솔의 경우 말초 조직과 중추신경계에 강한 영향을 미친다고 알려져 있으며, 종 종 정신 질환의 가능성 및 심각도를 결정하는 데 도움이 될 수 있는 생물학적 지표로 활용되어 왔다[10]. 또 다른 예로 신경펩타이드인 옥 시토신을 들 수 있는데 이는 유방암, 난소암, 전립선암과 같은 암 질 환[11,12]뿐만 아니라 자폐증, 조현병, 산후우울증, 알츠하이머병, 불 안장애와 같은 정신질환[13,14]과 관련된 생물학적 지표로써 활발한 연구가 이루어지고 있다.

신경펩타이드인 옥시토신(oxytocin)을 정량 또는 정성 분석하는 방 법으로는 질량분석법(mass spectrometry, MS), 실시간 중합효소 연쇄 반응(polymerase chain reaction), enzyme-linked immunoassay (ELISA), western blotting 등을 들 수 있다. 예를 들어 탠덤 삼중 사중극자 질량 분석기를 이용하여 옥시토신 분석 감도를 ~40배 향상시켜 인간 혈청 분석에 적용가능한 MS 정량화 방법을 개발하였다[15]. 또한 합성 옥 시토신 물질에 존재하는 구조적으로 관련된 펩타이드 불순물은 새로 개발되고 자체 검증된 액체 크로마토그래피-고해상도 질량 분석 방법 을 통해 옥시토신과 불순물을 식별하고 정확하게 정량화하는 방법도 개발되었다[16]. 한편, Li et al.은 ELISA 및 rich internet application (RIA) 기술을 이용하여 샘플 안에 존재하는 옥시토신의 농도를 측정 하여 자폐 스펙트럼 장애가 있는 개인과 없는 개인의 수준을 보는 데 적용하였다[17]. 뿐만 아니라 나노를 접목한 바이오센싱 플랫폼으로 도 옥시토신의 농도를 측정하는 방법들이 보고되었다. 그 예로, 키토 산-탄소 나노섬유(chitosan-carbon nanofiber, CNF) 기반의 멤브레인을 개발하여 전기화학적으로 우유에 존재하는 옥시토신의 양을 검출한 방법[18], 탄소 섬유 미세 전극과 함께 고속 스캔 순환 전압전류법을 사용하여 옥시토신의 티로신 잔기를 표적으로 검출하는 방법[19], 질 소-도핑 탄소점을 이용하여 옥시토신을 좀 더 선택적이고 민감하게 형광법으로 분석하는 방법[20], 시스테아민으로 변형된 금 나노입자 를 이용하여 비색법으로 검출하는 방법[21], 옥시토신 수용체를 포함 한 기반으로 한 나노사이즈의 형광 펩타이드를 이용하여 인간 혈청 속에 존재하는 옥시토신 농도를 분석하는 방법[22]이 있다.

표면-민감한 분석법인 표면 플라즈몬 공명(surface plasmon resonance, SPR) 분석법 역시 생물학적 표지 인자 검출에 유용하게 활용 될 수 있는데, 형광 또는 발광 등의 신호형질 없이 굴절률의 변화를 감지하는 원리에 기초하고 있어, 단백질 같이 큰 분자량을 갖는 물질 검출하는데 주로 사용되어 왔다. 특히 분자량이 작은 분자의 검출의 경우 민감도 및 특이성의 한계를 극복하기 위해 효소 증폭 및 다양한 모양과 크기의 나노 입자를 접목한 샌드위치 복합체 형성 방법 등의 많은 연구가 집중되어 이루어졌다[23-25]. 이 중 metal organic frameworks (MOFs)는 다공성 나노 소재로 표면적 대비 부피비가 우수하고, 중심금속 변형에 따라 전기 및 광학적 신호형질로 직접 사용될 수 있 는 장점을 가지고 있으나[26-28], 아직까지 SPR 분석법에 접목한 응 용의 예는 많지가 않다. 최근, programmed death ligand-1 엑소좀[29] 및 sulfamethazine[30]을 고감도로 감지하는 데 MOF를 융합한 SPR 분석법이 보고되었다.

본 연구에서는 신경펩타이드인 옥시토신을 SPR 분석법으로 고감도 및 고선택적으로 검출하기 위해 항체 페어를 이용하여 옥시토신과 샌 드위치 복합체를 형성하여 선택성을 향상시키면서, 다공성을 가지면 서 표면적 대비 부피비가 우수한 MOF (예: UiO-66-(COOH))에 바이 오기능성을 도입하여 신호증폭형질로 사용함으로써 감도를 높이고자 하였다. 이를 위해 먼저 선정한 항체 페어 각각이 옥시토신에 특이적 으로 강하게 결합하는지와 이들 항체가 옥시토신의 서로 다른 영역에 결합하여 샌드위치 복합체를 형성할 수 있는지 여부를 실시간 SPR 분 석법으로 측정하였다. 고감도 고선택적 검출을 위해 옥시토신에 특이 적인 항체 페어로 선정한 항체 중 한 개(anti-OXT[OTI5G4])를 SPR 용 금 박막 칩에 고정하고, 옥시토신을 흘려준 후 UiO-66-(COOH)2 MOF 표면에 옥시토신 특이적 또 다른 항체(anti-OXT[4G11])를 이종 양쪽기능성 가교제(heterobifunctional crosslinker)를 이용하여 공유적 으로 결합시킨 바이오기능화된 MOF (예: UiO-66-(COOH)2-anti-OXT [4G11])를 흘려주어 표면 샌드위치 복합체(anti-OXT[OTI5G4]/oxytocin/ UiO-66-(COOH)2-anti-OXT[4G11])를 형성하였다. 이 때 이미 고정된 농도의 항체칩에 옥시토신의 농도를 증가시키면서 고정된 농도를 갖 는 UiO-66-(COOH)2-anti-OXT[4G11]를 흘려주었을 때, 증가하는 SPR 신호(refractive unit, RU)를 측정함으로써 옥시토신을 수십 fM까지 정 량 분석할 수 있었다.

2. 실험 및 방법

2.1. 시약 및 재료

1,2,4,5-benzenetetracarboxylic acid [C₆H₂(CO₂H)₄, 96%, Sigma], trifluoroacetic acid (C₂HF₃O₂, 99%, Alfa Aesar), zirconyl (IV) nitrate hydrate [ZrO(NO₃)₂·xH₂O, 99.5%, ACROS Organics], oxytocin (OXT, Sigma), anti-OXT [4G11] (Sigma-Aldrich), monoclonal anti-OXT [OTI5G4] (Thermo Fisher), heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1, Abcam), N-hydroxysulfosuccinimide (sulfo-NHS, Thermo), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimde hydrochloride (EDC, Thermo), 2-(N-morpholino)ethane sulfonic acid (MES, 99%, C₆H₁₃NO₄S, Sigma), 11-mercaptoundecanoic acid (MUA, Sigma)는 구 입한 그대로 사용하였다. 모든 수용액은 Millipore 필터를 통하여 여 과된 중류수를 사용하여 제조하였으며, 인산완충생리식염수(phosphate buffered saline, PBS)의 경우 PBS 10X (pH 7.4, Thermo Fisher)를 증 류수로 10배 희석하여 제조하고, pH를 7.4에 맞추어 사용하였다. 모든 실험은 달리 명시되지 않는 한 상온에서 수행하였다.

2.2. UiO-66-(COOH)2의 합성

UiO-66-(COOH)₂은 1,2,4,5-benzenetetracarboxylic acid와 zirconyl(IV) nitrate hydrate를 사용하여 합성하였다[31]. 합성 과정을 자세히 설명 하자면, 첫 번째로 0.160 g의 1,2,4,5-benzenetetracarboxylic acid를 7.5 mL의 증류수에 첨가하여 10분 동안 100 ℃ 오븐에서 녹였다. 이와 별 개로, sonication 방법으로 zirconyl(IV) nitrate hydrate 0.225 g을 증류 수 7.5 mL에 녹인 후, 용질이 모두 녹아 투명해진 두 용액을 상온에서 섞어주고, 2.5 mL의 trifluoroacetic acid를 첨가하였다. 해당 혼합물을 상온에서 48시간 동안 교반한 후 증류수, 에탄올, 아세톤을 사용하여 원심분리 방법으로 여과 및 세척하였다. 마지막으로, 이를 오븐에서 건조하면 흰 가루 형태의 UiO-66-(COOH)₂를 얻을 수 있었다. 합성한 UiO-66-(COOH)₂의 특성 분석은 X-ray diffraction (XRD, Bruker, D2 PHASER), N₂-isotherm (Micromeritics, Tristar II 3020), bio-trans-

Figure 1. Representative (a) X-ray diffraction pattern and (b) N_2 isotherm data confirming the synthesis of UiO-66-(COOH)₂. Inset in (a) is the size and shape information provided by TEM and HR-TEM.

mission electron microscope (Bio-TEM, Hitachi, HT 7700), field emission-scanning electron microscope (FE-SEM, Hitachi, SU8220 & SU8230)으로 진행하였으며, 그 결과를 Figure 1에 나타내었다. 먼저 simulated UiO-66a과 유사한 UiO-66-(COOH)2의 XRD 패턴을 통해 UiO-66-(COOH)2의 합성이 성공적으로 이루어져 두 물질이 서로 유사 한 결정성을 나타낸다는 것을 알 수 있다. 이는 FE-SEM 이미지에서 UiO-66-(COOH)2의 형태가 유지되는 것을 통해서도 확인할 수 있다. N2-isotherm 측정 결과에 따라, 합성한 UiO-66-(COOH)2는 기존의 다 른 논문들과 유사하게 682 m²/g의 표면적을 가지는 것을 확인할 수 있었고, Bio-TEM 및 FE-SEM 분석을 통해 UiO-66-(COOH)2가 평균 약 100~150 nm 크기임을 파악할 수 있었다.

2.3. UiO-66-(COOH)2 표면에 항체 기능성 도입화학

UiO-66-(COOH)2는 이종 양쪽기능성 가교제(heterobifunctional crosslinker) 중에 하나인 EDC/sulfo-NHS를 사용하여 옥시토신 항체에 랜덤하게 존재하는 아민기와 공유 결합하여 항체기능성을 도입한 UiO-66-(COOH)2를 만들었다. 간단히 설명하면, MES 버퍼(10 mM, pH 6.0)에 UiO-66-(COOH)2 (0.5 mg/mL)와 500 µL의 EDC (25.8 mM) 및 sulfo-NHS (52.1 mM)를 넣어주어 30분간 활성화한 후, 활성화된 UiO-66-(COOH)2에 반응하지 않고 남은 과량의 EDC/sulfo-NHS를 1X PBS 용액으로 세척하여 제거하였다. 상기 활성화된 UiO-66-(COOH)2 용액에 anti-OXT [4G11] 항체를 넣어 항체의 최종 농도가 200 nM이 되도록 한 후, 여덟 시간 동안 반응하였다. 이 후, 원심분리를 통해 결 합되지 않은 항체층을 제거하고, UiO-66-(COOH)2-anti-OXT [4G11]를 분리했다. 분리한 UiO-66-(COOH)2-anti-OXT [4G11]는 1X PBS 용 액에 분산시켜 SPR 분석법에 활용하기전까지 4 °C에 보관하였다.

2.4. Anti-OXT [OTI5G4]을 고정한 SPR 바이오칩 제작 및 실시간 SPR 분석 방법

SPR용 bare 금 박막 칩(45 nm Au, Biacore, GE Healthcare)을 에탄 올 및 탈이온수로 세척한 후 에탄올 용매 하에 제조한 1 mM MUA 용액에 12 시간 동안 담궈 두어 카르복실기(-COOH) 말단이 있는 자 기조립 단층을 쌓았다. 이 후 상기 MUA로 코팅된 칩을 7.5 mM EDC 및 1.5 mM sulfo-NHS 용액과 적어도 30 분간 습기조절챔버에서 반응 시켜 활성화한 후 anti-OXT[OTI5G4] (6.67 μM)에 무작위로 존재하는 아민기와 공유결합이 가능하도록 3 시간 정도 추가로 반응하였다. 마 지막으로, 항체 코팅된 칩을 1X PBS 용액으로 여러 번 세척한 후 SPR 분석법에 활용하기 전까지 4 ℃에 보관하였다. 생체분자(예: 옥시 토신과 항체)간의 결합(흡착) 상호작용을 모니터링하기 위해 Biacore SPR 3000 (GE Healthcare, 이화여대 형광코어이미징센터)을 사용하였

Figure 2. Scheme illustrating an SPR sandwich assay for oxytocin using anti-oxytocin [4G11] functionalized UiO-66-(COOH)₂ adsorbed onto oxytocin bound to an anti-oxytocin [OT15G4] tethered SPR thin gold film.

다. 이 때 단백질 주입 시 3 μL/min 로 항체 주입 시 5 μL/min의 유속 을 유지하였으며, 1X PBS (pH 7.4)를 러닝 버퍼로 사용하였다. 또한 옥시토신 항체와 옥시토신 간의 결합(흡착) 과정을 실시간으로 측정 할 때 낮은 농도의 옥시토신을 검출하기 위해 다양한 농도의 옥시토 신을 PBS 용액에서 적어도 1 시간 동안 anti-OXT [OTI5G4]을 고정한 SPR 칩에 흘려주었다. 표면 샌드위치 복합체(anti-OXT[OTI5G4]/oxytocin/ UiO-66-(COOH)₂-anti-OXT[4G11]) 형성을 통해 옥시토신을 검 출하는데는 iMSPR-mini-F (iCLUEBiO)을 사용하였으며, 이 때 옥시 토신과 UiO-66-(COOH)₂-anti-OXT[4G11]를 주입할 때 흐름속도는 20 µL/min이었고, 러닝 버퍼로 증류수를 사용하였다.

3. 결과 및 고찰

3.1. 옥시토신의 선택적 검출을 위한 항체 페어 선정

옥시토신을 좀 더 고감도 고선택적으로 검출하기 위해 본 논문에서 는 옥시토신에 특이적인 항체-항체 페어를 사용함과 동시에 이들 항 체 중 하나의 항체에 UiO-66-(COOH)₂ 소재를 접목하는 새로운 SPR 샌드위치 분석법을 개발하였다. 즉, Figure 2에서 보듯이 먼저 anti-OXT [OTI5G4]로 변형된 SPR 금 박막 칩에 서로 다른 농도의 옥시토 신을 흘려주고, 순차적으로 고정된 농도의 UiO-66-(COOH)₂-anti-OXT [4G11]를 흘려주어 SPR 칩 표면에 "anti-OXT [OTI5G4]/oxytocin/ UiO-66-(COOH)₂-anti-OXT [4G11]" 샌드위치 복합체를 형성함으로써 옥시토신의 농도에 따라 실시간으로 변하는 SPR 신호를 측정하여 옥 시토신을 정량 분석하는 방법을 제시하였다.

먼저 표면 샌드위치 분석법으로 옥시토신을 분석하기 전에 선정한 항체 페어 중 각 항체가 옥시토신에 대한 결합력의 세기가 어느 정도 인지 실시간 SPR 분석법을 이용하여 측정하였다. 이를 위해 anti-OXT [OTI5G4]과 anti-OXT [4G11] 각각을 MUA로 코팅된 SPR용 금 박막 칩에 고정시키고, PBS 용액으로 조성된 다양한 농도의 옥시토신과의 결합력을 실시간 SPR로 모니터링하였다. 결합력을 계산하기 위해 가 장 높은 농도의 옥시토신을 흘려주었을 때 측정한 RU 변화 값으로 각 옥시토신 농도에 따른 RU값을 나누어 주면 표면 흡착률(surface coverage, θ)을 얻는다. 이후 옥시토신 농도 변화에 따라 얻어진 $\theta 를 그$ 래프로 나타내고 이들 데이터 포인트를 흡착된 분자 간의 더 이상의 상호작용 없이, 타겟과 표면에 결합된 리간드 간의 단순한 1:1 결합을 고려한 Langmuir 흡착 등온선 모델[식 (1)][32]로 핏팅(fitting)을 하면, 흡착 계수(Kads)를 구할 수 있다. Figure 3에는 각 항체별 옥시토신 농 도에 따른 θ 변화 값과 이를 식 (1)로 핏팅한 결과를 나타내었으며, anti-OXT [4G11]와 anti-OXT [OTI5G4] 각각이 옥시토신에 대한 흡착

Figure 3. Langmuir adsorption isotherm data plotting the fractional surface coverage (θ) versus oxytocin concentration using (a) anti-oxytocin [4G11] and (b) anti-oxytocin [OT15G4] immobilized on SPR thin gold film. The arrows in (a-b) indicate the oxytocin concentration at which maximum surface coverage is achieved.

계수는 2.9 (± 0.6) × 10⁷ M⁻¹ 및 1.5 (± 0.3) × 10⁸ M⁻¹이었다. Anti-OXT [OTI5G4]이 옥시토신에 대한 흡착계수가 좀 더 높다는 것 은 옥시토신에 더 강하게 결합하고 더 오래 결합 상태를 유지하며, 더 큰 안정성과 특이성을 제공한다는 것을 의미한다[33]. 따라서 OXT에 대해 흡착계수가 좀 더 커서 좀 더 강한 결합력을 갖는다고 판단된 anti-OXT [OTI5G4]를 금 박막 칩 표면에 부착하는 탐지용 프로브 (probe)로 선택하였으며, 옥시토신 분석을 위한 표면 샌드위치 복합체 를 만들 때, UiO-66-(COOH)₂에 컨쥬게이션(conjugation)하는 신호증 폭용 프로브로 anti-OXT [4G11]을 선정하였다.

$$\theta = \frac{K_{ads}C}{1 + K_{ads}C} \tag{1}$$

3.2. 옥시토신의 초고감도 검출을 위한 UiO-66-(COOH)₂-anti-OXT [4G11] 융합형 SPR 샌드위치 분석법

표면 샌드위치 분석법의 핵심은 선정한 항체 페어의 각 항체가 옥 시토신의 서로 다른 결합사이트에서 결합해야 한다는 점이다. 따라서 이 두 항체가 옥시토신의 서로 다른 결합사이트에서 결합을 형성하여 샌드위치 복합체를 형성할 수 있는지 확인하는 것이다. 이를 위해 anti-OXT [OTI5G4]으로 고정한 SPR용 금 박막 칩에 옥시토신이 충분히 결합하여 항체표면이 옥시토신으로 완전히 커버되도록 하기 위해, 고 농도(200 nM)의 옥시토신을 흘려주고, 그 후 순차적으로 다양한 농도 의 anti-OXT [4G11]을 흘려주었다(Figure 4 참조). 그 결과 anti-OXT [4G11]의 농도가 증가함에 따라 RU 신호값이 증가하였으며 약 80 nM 이상의 anti-OXT [4G11] 농도에서는 SPR 신호가 더 이상 증가하 지 않음을 확인하였다. 또한 anti-OXT [OTI5G4]로 코팅한 SPR 칩 표 면에 비특이적인 흡착에 의한 거짓 신호의 크기를 알아보기 위해 대 조군[negative control(NC)]로 샌드위치 복합체를 형성할 때 옥시토신 없이 anti-OXT [4G11]만을 흘려준 경우(NC1)와 옥시토신 대신 옥시 토신항체와 결합하지 않는 단백질인 hnRNP A1과 anti-OXT [4G11]을 순차적으로 흘려주었을 때(NC2) SPR 신호를 측정하였다. Figure 4a에 서 보듯이 NC1과 NC2의 경우 모두 비특이적으로 흡착하는 정도가 매우 낮음을 볼 수 있다. 이러한 결과를 종합해 볼 때 본 연구에서 선 정한 항체-항체 페어가 옥시토신 검출을 위한 SPR샌드위치 분석법으 로 사용될 수 있음을 암시한다.

앞서 언급한 항체 페어가 옥시토신과 샌드위치 복합체를 형성하여 검출할 수 있다는 점을 기반으로 하여, 항체 페어 중 좀 더 높은 흡착 계수를 보였던 anti-OXT [OTI5G4]를 금박막칩에 고정하여 옥시토신

Figure 4. (a) A series of real-time SPR signal changes for the binding of various concentrations of anti-oxytocin [4G11] onto 100 nM oxytocin pre-reacted with anti-oxytocin [0T15G4]. In (a), the NT-proBNP concentrations are (i) 5 nM, (ii) 10 nM, (iii) 25 nM, (iv) 50 nM and (v) 100 nM in PBS solution. (b) A plot of the normalized RU values from SPR responses against anti-oxytocin [4G11] concentrations. Data points are taken from (a). NC1 is the SPR response measured in the absence of oxytocin and NC 2 is the SPR signal observed for the adsorption of hnRNP A1 protein instead of oxytocin.

을 좀 더 강하게 표면에서 결합하고, 상대적으로 결합력이 낮았던 anti-OXT [4G11]를 신호증폭소재인 UiO-66-(COOH)₂에 결합하여 검출용 프로브로 사용하였다. UiO-66-(COOH)₂에 항체를 코팅하였을 때, 문 헌에서 이미 보고되었듯이[34], 기공의 크기와 비표면적에 변화가 있 을 것으로 예상된다. 하지만, 본 연구에서는 큰 질량을 갖는 UiO-66-(COOH)₂를 SPR 분석법에 도입해 이들이 SPR 칩표면에 흡착될 때 변 화되는 굴절률의 변화가 커질 것으로 예측하여 검출 신호 증폭용 소 재로 사용하였으며, 항체 코팅으로 인한 기공의 크기와 비표면적의 변화는 SPR 신호 변화에 크게 영향을 주지 않는 것으로 사료된다. 무 엇보다도, 항체를 붙이기 위해 카복실기(-COOH)로 기능화 된 UiO-66-(COOH)₂를 사용하여 옥시토신 특이적 항체를 코팅함으로 옥시토신 과 결합하여 샌드위치 복합체를 형성함으로써 옥시토신 검출에 대한 선택성을 높이고자 하였다.

Figure 2에서 확인할 수 있듯이 항체 한 개 만을 사용하였을 때 옥 시토신 검출 능력은 수 nM 정도였다. 그러나 anti-OXT [OTI5G4]으로 고정한 금 박막 칩에 서로 다른 농도의 옥시토신을 흘려주고 순차적 으로 고정된 농도의 UiO-66-(COOH)2-anti OXT [4G11](90 nM)를 흘 려주어 샌드위치 복합체를 형성하였을 때 Figure 5에서 보듯이 1 pM 에서 10 fM 까지 옥시토신을 분석할 수 있음을 확인할 수 있었다. 이 는 옥시토신 검출 능력을 거의 백만 배 이상 향상시킨 결과로 볼 수 있다. 하지만, 샌드위치 복합체를 형성할 때 옥시토신 없이 UiO-66-(COOH)2-anti OXT [4G11]만을 anti-OXT [OTI5G4]으로 고정한 금 박 막 칩에 노출시켰을 때 발생하였던 비특이적인 흡착정도가 상당히 컸 으며, 이는 UiO-66-(COOH)2로 코팅하지 않은 항체를 흘려주었을 때 대비 매우 높음을 볼 수 있다. Figure 5의 데이터를 기반으로 검출한 계(limit of detection, LOD)를 구하였을 때 그 값은 약 80 fM 정도로 예측되지만, 좀 더 정확한 LOD 값을 도출하기 위해서는 농도 범위를 좀 더 세분화하여 데이터의 수를 늘려야 하며, 무엇보다도, UiO-66-(COOH)2 또는 시료 안에 검출을 방해하는 물질의 비특이적인 흡착 등으로 인한 SPR 측정값의 정확도가 낮아지는 것을 개선하는 것이 필 요하다. 즉, SPR 센서 칩 표면에 비특이적인 흡착 정도는 옥시토신 정 량분석의 검출한계뿐 아니라, 선택성, 감도 등의 성능을 떨어뜨리는 주요 요인 중에 하나이기에 이를 최소화하는 방안을 도입하는 것이 필요하다. 이를 위해, 첫 번째 방안으로 SPR 칩 또는 UiO-66-(COOH)2

Figure 5. In-situ SPR responses as a function of different oxytocin concentrations where oxytocin was adsorbed an anti-oxytocin [OT15G4] tethered SPR thin gold film followed by the adsorption of anti-oxytocin [4G11] functionalized UIO66. (i) 10 fM, (ii) 100 fM and (iii) 1 pM oxytocin were used. NC1 is the SPR response measured in the absence of oxytocin.

소재의 표면을 다양한 블로킹시약(예: mercaptoundecanol, polyethylene glycol, bovine serum albumin, chitosan, ethanol amine 등)으로 처리하 여 분석 타켓 이외의 원하지 않는 방해물질들의 비특이적인 흡착을 최소화하는 방법을 들 수 있다[35,36]. 두 번째로는 탐침용 프로브나 검출용 프로브로 항체 대신 옥시토신에 좀 더 강하게 선택적으로 결 합할 수 있는 바이오리셉터[예: 핵산 앱타머, 펩타이드 핵산(peptide nucleic acid, PNA), 잠금 핵산(locked nucleic acid, LNA) 등을 고안하 여 활용하는 방법을 들 수 있다[37,38].

4. 결 론

본 논문에서는 낮은 펨토몰부터 높은 나노몰 수준까지 다양한 농도 범위에서 옥시토신을 분석할 수 있는 SPR 분석법을 개발하였다. 특히 10 fM의 옥시토신 분석을 위해 항체 페어를 선정하고 그 중 하나를 다공성 MOF 신호증폭소재인 UiO-66-(COOH)2에 접목하여 UiO-66-(COOH)2-anti-OXT [4G11]라는 검출용 프로브로 사용하면서 이와 함 께 다른 항체인 anti-OXT [OTI5G4]를 SPR 칩 표면에 고정하여 탐침 용 프로브로 활용하면서 옥시토신과 샌드위치 복합체를 형성하여 분 석하는 방법을 제시하였다. UiO-66-(COOH)2 검출용 신호증폭 MOF 소재를 사용하지 않은 경우 nM 정도의 옥시토신을 검출할 수 있었으 나 이를 사용함으로써 약 백만 배의 신호 증폭효과를 얻을 수 있었다. 또한 선정한 페어들이 샌드위치 복합체를 형성할 수 있는지 그리고, 선정한 각 항체가 우수한 결합력을 갖는지에 대해서도 간단하게 실시 간 SPR 분석법을 이용하여 확인할 수 있었다. 이렇게 우수한 옥시토 신 검출 능력을 보였음에도 불구하고, 해결해야 할 가장 어려운 문제 접(예를 들어 금 박막 칩 표면에 MOF의 비특이적인 흡착으로 인한 신호 증가 및 선택성 향상 등)이 여전히 남아있다. 이를 위해 MOF (UiO-66-(COOH)2) 표면 개질 화학 개발, 또는 항체칩 표면 개질, 항체 를 대체할 수 있는 바이오리셉터(예: 앱타머, 펩타이드 핵산, 잠금 핵 산 등)를 개발하고 활용하는 등의 노력이 필요하다. 또한 MOF 등의 무게가 큰 신호 증폭 소재를 활용하였을 때 측정 후에 SPR 표면에 흡 착된 이런 소재를 완전히 탈착하기 어려워 SPR 센서칩을 재사용하기 가 어렵다. 사용하는 러닝완충용액의 pH를 조절하여 이들을 탈착하여 재사용 할 수는 있지만, SPR 칩 표면 및 MOF 표면에 고정한 항체 활 성을 잃을 수도 있어 궁극적으로 이를 해결하는 연구가 추가적으로 이루어질 필요가 있다. 최종적으로, MOF에 항체 기능성을 도입하여

신호증폭소재로 활용하고 옥시토신의 선택적 검출을 위한 항체 폐어 사용함으로써 약 10 fM 수준의 초고감도로 옥시토신을 검출할 수 있 다는 점을 시사한 본 연구의 결과물은 다양한 생물학적 표지 분석에 확대 응용가능성을 제시한다고 사료된다.

Acknowledgement

This Project was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korean government (Ministry of Science and ICT, MSIT) (Grand number: RS-2023-00207831 and RS-2024-00343620).

References

- A. Dhillon, A. Singh, and V. K. Bhalla, A Systematic review on biomarker identification for cancer diagnosis and prognosis in multi-omics: From computational needs to machine learning and deep learning, *Arch. Comput. Method Eng.*, **30**, 917-949 (2022).
- K. Yerin, C. Yu Rim, K. Bong-Geun, and N. Hyon Bin, Recent progress in multiplexed detection of biomarkers based on quantum dots, *Appl. Chem. Eng.*, 33, 451-458 (2022).
- J. Li, Y. Si, D. T. Nde, and H. J. Lee, Development of voltammetric nanobio-incorporated analytical method for protein biomarker specific to early diagnosis of lung cancer, *Appl. Chem. Eng.*, **32**, 461-466 (2021).
- J. Li, Y. Si, and H. J. Lee, Recent research trend of biosensors for colorectal cancer specific protein biomarkers, *Appl. Chem. Eng.*, **32**, 253-259 (2021).
- H. Kim, J. U. Lee, S. Song, S. Kim, and S. J. Sim, A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers, *Biosens. Bioelectron.*, 101, 96-102 (2018).
- C. Min, H. Ha, and J. Jeon, Development of fluorescent small molecules for imaging of Alzheimer's disease biomarkers, *Appl. Chem. Eng.*, **32**, 1-9 (2021).
- M. Supianto, J. Lim, and H. J. Lee, Development of lateral flow immunofluorescence assay applicable to lung cancer, *Appl. Chem. Eng.*, 33, 173-178 (2022).
- R. R. Kumar, A. Kumar, C.-H. Chuang, and M. O. Shaikh, Recent advances and emerging trends in cancer biomarker detection technologies, *Ind. Eng. Chem. Res.*, 62, 5691-5713 (2023).
- E. Piktel, I. Levental, B. Durnas, P. A. Janmey, and R. Bucki, Plasma gelsolin: Indicator of inflammation and its potential as a diagnostic tool and therapeutic target, *Int. J. Mol. Sci.*, **19**, 2516 (2018).
- E. Dziurkowska and M. Wesolowski, Cortisol as a biomarker of mental disorder severity, J. Clin. Med., 10, 5204 (2021).
- 11. B. Lerman, T. Harricharran, and O. O. Ogunwobi, Oxytocin and cancer: An emerging link, *World J. Clin. Oncol.*, 9, 74-82 (2018).
- H. Xu, S. Fu, Q. Chen, M. Gu, J. Zhou, C. Liu, Y. Chen, and Z. Wang, The function of oxytocin: a potential biomarker for prostate cancer diagnosis and promoter of prostate cancer, *Oncotarget*, 8, 31215 (2017).
- A. H. Kemp, D. S. Quintana, R.-L. Kuhnert, K. Griffiths, I. B. Hickie, and A. J. Guastella, Oxytocin increases heart rate variability in humans at rest: implications for social approach-related

motivation and capacity for social engagement, *PLoS One*, 7, e44014 (2012).

- H. Yamasue, Function and structure in social brain regions can link oxytocin-receptor genes with autistic social behavior, *Brain Dev.*, 35, 111-8 (2013).
- A. Hering, B. Jieu, A. Jones, and M. Muttenthaler, Approaches to improve the quantitation of oxytocin in human serum by mass spectrometry, *Front. Chem.*, **10**, 889154 (2022).
- M. Li, R. D. Josephs, A. Daireaux, T. Choteau, S. Westwood, G. Martos, R. I. Wielgosz, and H. Li, Structurally related peptide impurity identification and accurate quantification for synthetic oxytocin by liquid chromatography-high-resolution mass spectrometry, *Anal. Bioanal. Chem.*, **413**, 1861-1870 (2021).
- M. Moerkerke, M. Peeters, L. de Vries, N. Daniels, J. Steyaert, K. Alaerts, and B. Boets, Endogenous oxytocin levels in autism-a meta-analysis, *Brain Sci.*, 11, 1545 (2021).
- S. Mehrotra, P. Rai, K. Gautam, A. Saxena, R. Verma, V. Lahane, S. Singh, A. K. Yadav, S. Patnaik, S. Anbumani, S. Priya, and S. K. Sharma, Chitosan-carbon nanofiber based disposable bioelectrode for electrochemical detection of oxytocin, *Food Chem.*, 418, 135965 (2023).
- F. A. Liu, N. Ardabili, I. Brown, H. Rafi, C. Cook, R. Nikopoulou, A. Lopez, S. Zou, M. R. Hartings, and A. G. Zestos, Modified sawhorse waveform for the voltammetric detection of oxytocin, *J. Electrochem. Soc.*, 169, 017512 (2022).
- Y. Zhou, M. Liu, X. Liu, R. Jiang, Y. He, Q. Yao, H. Chen, and C. Fu, Rapid and sensitive fluorescence determination of oxytocin using nitrogen-doped carbon dots as fluorophores, *J. Pharm. Biomed. Anal.*, 229, 115344 (2023).
- S. Rastogi, V. Kumari, V. Sharma, and F. J. Ahmad, Colorimetric detection of oxytocin in bottle gourd using cysteamine functionalized gold nanoparticle (Cys-AuNPs), *Food Anal. Meth.*, 15, 2972-2983 (2022).
- Y. Suzuki, Development of magnetic nanobeads modified by artificial fluorescent peptides for the highly sensitive and selective analysis of oxytocin, *Sensors*, 20, 5956 (2020).
- K. Bong-Geun, Y. Sang Bin, H. Sukyeong, and N. Hyon Bin, Recent progress in colorimetric assays using the absorption of plasmonic gold nanoparticles, *Appl. Chem. Eng.*, 35, 67-78 (2024).
- V. Yesudasu, H. S. Pradhan, and R. J. Pandya, Recent progress in surface plasmon resonance based sensors: A comprehensive review, *Heliyon*, 7, e06321 (2021).
- Q. Wang, Z.-H. Ren, W.-M. Zhao, L. Wang, X. Yan, A.-s. Zhu, F.-m. Qiu, and K.-K. Zhang, Research advances on surface plasmon resonance biosensors, *Nanoscale*, 14, 564-591 (2022).
- 26. J. Li, S. H. Lee, D. K. Yoo, H. C. Woo, S. H. Jhung, M. Jović, H. Girault, and H. J. Lee, A spatially multiplexed voltammetric magneto-sandwich assay involving Fe₃O₄/Fe-based metal-organic framework for dual liver cancer biomarkers, *Sens. Actuators B Chem.*, **380**, 133313 (2023).
- M. Supianto, D. K. Yoo, H. Hwang, H. B. Oh, S. H. Jhung, and H. J. Lee, Linker-preserved iron metal-organic framework-based lateral flow assay for sensitive transglutaminase 2 detection in urine through machine learning-assisted colorimetric analysis, *ACS Sens.*, 9, 1321-1330 (2024).
- 28. P. Sunghwan and L. Young-Sei, Scalable fabrications of mixedmatrix membranes via polymer modification-enabled in situ metal-

organic framework formation for gas separation: A review, *Appl. Chem. Eng.*, **34**, 213-220 (2023).

- Y. Wang, Z. Mao, Q. Chen, K. Koh, X. Hu, and H. Chen, Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer, *Biosens. Bioelectron.*, 201, 113954 (2022).
- Y. Wang, Z. Niu, C. Xu, M. Zhan, K. Koh, J. Niu, and H. Chen, 2D MOF-enhanced SPR sensing platform: Facile and ultrasensitive detection of sulfamethazine via supramolecular probe, *J. Hazard. Mater.*, 456, 131642 (2023).
- Z. Chen, X. Wang, H. Noh, G. Ayoub, G. W. Peterson, C. T. Buru, T. Islamoglu, and O. K. Farha, Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal -organic frameworks for toxic chemical removal, *CrystEngComm*, 21, 2409-2415 (2019).
- S. Kim and H. J. Lee, Direct detection of alpha-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, *Anal. Chem.*, 87, 7235-40 (2015).
- 33. S. H. Lee, J. H. Back, H. J. Joo, D.-S. Lim, J. E. Lee, and H. J. Lee, Simultaneous detection method for two cardiac disease protein biomarkers on a single chip modified with mixed aptamers using surface plasmon resonance, *Talanta*, 267, 125232 (2024).
- 34. L. Rahmidar, G. Gumilar, N. L. W. Septiani, C. Wulandari, M. Iqbal, S. Wustoni, and B. Yuliarto, Label-free and early detection of HER2 breast cancer biomarker based on UiO-66-NH₂ modified gold chip (Au/UiO-66-NH₂) using surface plasmon resonance technique, *Microchem. J.*, **199**, 109963 (2024).
- S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance, *Anal. Chem.*, 88, 7793-7799 (2016).
- 36. S. Kim and H. J. Lee, Direct detection of α-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer –antibody sandwich assay, *Anal. Chem.*, 87, 7235-7240 (2015).
- S. Kim, S. Lee, and H. J. Lee, An aptamer-aptamer sandwich assay with nanorod-enhanced surface plasmon resonance for attomolar concentration of norovirus capsid protein, *Sens. Actuators B Chem.*, 273, 1029-1036 (2018).
- H. J. Lee, A. W. Wark, and R. M. Corn, Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings, *Analyst*, 133, 596-601 (2008).

Authors

- Myungseob Lee; M.Sc., Graduated Student, Department of Chemistry, Kyungpook National University, Daegu-city 41566, Republic of Korea; audtjq1226@naver.com
- Ha-Young Nam; B.Sc., Graduate Student, Department of Chemistry, Kyungpook National University, Daegu-city 41566, Republic of Korea; ribbit0818@gmail.com
- Su Yeon Park; B.Sc., Graduate Student, Department of Chemistry, Kyungpook National University, Daegu-city 41566, Republic of Korea; psyl166@naver.com
- Sung Hwa Jhung; Ph.D., Professor, Department of Chemistry, Kyungpook National University, Daegu-city 41566, Republic of Korea; sung @knu.ac.kr
- Hye Jin Lee; Ph.D., Professor, Department of Chemistry, Kyungpook National University, Daegu-city 41566, Republic of Korea; hyejin lee@knu.ac.kr