DOI QR코드

DOI QR Code

Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES-STiO2) ultrafiltration membranes for fouling mitigation

  • Received : 2018.05.06
  • Accepted : 2018.06.25
  • Published : 2018.11.25

Abstract

Polyethersulfone (PES)/sulfonated $TiO_2$ ($STiO_2$) nanoparticles (NPs) UF blended membranes were fabricated with different loadings of $STiO_2$. The modified membranes exhibited significant improvement in surface roughness, porosity, and pore size when compared to the PES membrane. The $P-STiO_2$ 1 and $P-TiO_2$ 1 blended membranes exhibited higher water flux, approximately 102.4% and 62.6%, respectively, compared to PES. SPP-$STiO_2$ and $P-STiO_2$ showed lower Rir fouling resistance than the $P-TiO_2$ blended membrane. Overall, the $STiO_2$-blended membranes provide high hydrophilicity permeability, anti-fouling performance, and improved BSA rejection attributed to the hydrogen bonding force and more electrostatic repulsion properties of $STiO_2$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. V. Moghimifar, A. Raisi, A. Aroujalian, J. Membr. Sci. 461 (2014) 69. https://doi.org/10.1016/j.memsci.2014.02.012
  2. Z. Rahimi, A.A. Zinatizadeh, S. Zinadini, J. Ind. Eng. Chem. 38 (2016) 103. https://doi.org/10.1016/j.jiec.2016.04.011
  3. D. Rana, T. Matsuura, Chem. Rev. 110 (2010) 2448. https://doi.org/10.1021/cr800208y
  4. D. Rana, Y. Kim, T. Matsuura, H.A. Arafat, Membr. Sci. 367 (2011) 110. https://doi.org/10.1016/j.memsci.2010.10.050
  5. Y. Kim, D. Rana, T. Matsuura, W.-J. Chung, Chem. Commun. 48 (2012) 693. https://doi.org/10.1039/C1CC16217A
  6. D. Rana, B. Scheier, R.M. Narbaitz, T. Matsuura, S. Tabe, S.Y. Jasim, K.C. Khulbe, J. Membr. Sci. 409-410 (2012) 346. https://doi.org/10.1016/j.memsci.2012.04.005
  7. D. Rana, R.M. Narbaitz, A.-M. Garand-Sheridan, A. Westgate, T. Matsuura, S. Tabe, S.Y. Jasim, J. Mater. Chem. 2 (2014) 10059. https://doi.org/10.1039/C4TA01530D
  8. A. Razmjou, A. Resosudarmo, R.L. Holmes, H. Li, J. Mansouri, V. Chen, Desalination 287 (2012) 271. https://doi.org/10.1016/j.desal.2011.11.025
  9. G. Zhang, S. Lu, L. Zhang, Q. Meng, C. Shen, J. Zhang, J. Membr. Sci. 436 (2013) 163. https://doi.org/10.1016/j.memsci.2013.02.009
  10. Z. Rahimi, A.A.L. Zinatizadeh, S. Zinadini, J. Ind. Eng. Chem. 29 (2015) 366. https://doi.org/10.1016/j.jiec.2015.04.017
  11. S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, J. Membr. Sci. 453 (2014) 292. https://doi.org/10.1016/j.memsci.2013.10.070
  12. S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, Desalination 349 (2014) 145. https://doi.org/10.1016/j.desal.2014.07.007
  13. Z. Rahimi, A.A.L. Zinatizadeh, S. Zinadini, J. Ind. Eng. Chem. 29 (2015) 366. https://doi.org/10.1016/j.jiec.2015.04.017
  14. Z. Rahimi, A.A. Zinatizadeh, S. Zinadini, J. Appl. Res. Water Wastewater 1 (1) (2014) 13.
  15. M. Rahimi, S. Zinadini, A.A. Zinatizadeh, V. Vatanpour, L. Rajabi, Z. Rahimi, J. Appl. Polym. Sci. 133 (26) (2016) 43592.
  16. S. Zinadini, A.A.L. Zinatizadeh, M. Rahimi, V. Vatanpour, J. Ind. Eng. Chem. 46 (2017) 9. https://doi.org/10.1016/j.jiec.2016.08.005
  17. F. Gholami, S. Zinadini, A.A. Zinatizadeh, A.R. Abbasi, Sep. Purif. Technol. 194 (2018) 272. https://doi.org/10.1016/j.seppur.2017.11.054
  18. H. Zangeneh, A.A. Zinatizadeh, S. Zinadini, M. Feyzi, D.W. Bahnemann, React. Funct. Polym. 127 (2018) 139. https://doi.org/10.1016/j.reactfunctpolym.2018.04.008
  19. F. Gholami, S. Zinadini, A.A. Zinatizadeh, E. Noori, E. Rafiee, Int. J. Eng. Trans. 30 (10) (2017) 1425.
  20. A. Bottino, G. Capannelli, A. Comite, Desalination 146 (2002) 35. https://doi.org/10.1016/S0011-9164(02)00469-1
  21. A. Razmjou, J. Mansouri, V. Chena, J. Membr. Sci. 378 (2011) 73. https://doi.org/10.1016/j.memsci.2010.10.019
  22. X. Cao, J. Ma, X. Shi, Z. Ren, Appl. Surf. Sci. 253 (2006) 2003. https://doi.org/10.1016/j.apsusc.2006.03.090
  23. Y. Mansourpanah, S.S. Madaeni, A. Rahimpour, A. Farhadian, A.H. Taheri, J. Membr. Sci. 330 (2009) 297. https://doi.org/10.1016/j.memsci.2009.01.001
  24. S.S.A. Rahimpour, A.H. Madaeni, Y. Taheri, J. Membr. Sci. 313 (2008) 158. https://doi.org/10.1016/j.memsci.2007.12.075
  25. J. -Feng Li, Z.-L. Xu, H. Yang, L.-Y. Yu, M. Liu, Appl. Surf. Sci. 255 (2009) 4725. https://doi.org/10.1016/j.apsusc.2008.07.139
  26. X. Bian, L.S.X. Yang, X. Lu, Ind. Eng. Chem. Res. 50 (2011) 12113. https://doi.org/10.1021/ie200232u
  27. J.-P. Mericq, J. Mendret, S. Brosillon, C. Faur, Chem. Eng. Sci. 123 (2015) 283. https://doi.org/10.1016/j.ces.2014.10.047
  28. Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, J. Membr. Sci. 288 (2007) 231. https://doi.org/10.1016/j.memsci.2006.11.019
  29. V. Vatanpour, S.S. Madaeni, A.R. Khataee, E. Salehi, S. Zinadini, H.A. Monfared, Desalination 292 (2012) 19. https://doi.org/10.1016/j.desal.2012.02.006
  30. X. Fu, H. Matsuyama, H. Nagai, J. Appl. Polym. Sci. 108 (2008) 713. https://doi.org/10.1002/app.27711
  31. H. Song, J. Shao, Y. He, B. Liu, X. Zhong, J. Membr. Sci. 405-406 (2012) 48. https://doi.org/10.1016/j.memsci.2012.02.063
  32. Y. Xiao, K.Y. Wang, T.-S. Chung, J. Tan, Chem. Eng. J. 61 (2006) 6228. https://doi.org/10.1016/j.ces.2006.05.040
  33. S. Haque, I. Rehman, J.A. Darr, Langmuir 23 (2007) 6671. https://doi.org/10.1021/la063517i
  34. V.M. Gun'Ko, E.F. Voronin, E.M. Pakhlov, V.I. Zarko, V.V. Turov, N.V. Guzenko, E. C.R. Leboda, Colloid Surf. A: Physicochem. Eng. Asp. 166 (2000) 187. https://doi.org/10.1016/S0927-7757(99)00519-1
  35. G. Wua, S. Gan, L. Cui, Youyi Xu, Appl. Surf. Sci. 254 (2008) 7080. https://doi.org/10.1016/j.apsusc.2008.05.221
  36. L. Wang, F.-S. Xiao, Green Chem. 17 (2015) 24. https://doi.org/10.1039/C4GC01622J
  37. S. Ayyaru, S. Dharmaligam, Bioresour. Technol. 102 (2011) 11167. https://doi.org/10.1016/j.biortech.2011.09.021
  38. J.F. Blanco, Q.T. Nguyen, P. Schaetzel, J. Membr. Sci. 186 (2001) 267. https://doi.org/10.1016/S0376-7388(01)00331-3
  39. S. Ayyaru, S. Dharmaligam, RSC Adv. 3 (2013) 25243. https://doi.org/10.1039/c3ra44212h
  40. S. Ayyaru, Y.-H. Ahn, J. Membr. Sci. 525 (2017) 210. https://doi.org/10.1016/j.memsci.2016.10.048
  41. J. Gardy, A. Hassanpour, X. Lai, M.H. Ahmed, M. Rehan, Appl. Catal. B Environ. 207 (2017) 297. https://doi.org/10.1016/j.apcatb.2017.01.080
  42. S. Ayyaru, S. Dharmaligam, Y.-H. Ahn, Chem. Eng. J. 289 (2016) 442. https://doi.org/10.1016/j.cej.2015.12.095
  43. H. Rabiee, M.H.D. Farahani, V. Vatanpour, J. Membr. Sci. 472 (2014) 185. https://doi.org/10.1016/j.memsci.2014.08.051
  44. A. Cui, Z. Liu, Ch. Xiao, Y. Zhang, J. Membr. Sci. 360 (2010) 259. https://doi.org/10.1016/j.memsci.2010.05.023
  45. L. Yan, Y.S. Li, C.B. Xiang, S. Xianda, J. Membr. Sci. 276 (2006) 162. https://doi.org/10.1016/j.memsci.2005.09.044
  46. Z.L. L.-Yun, Yu Xu, H.-M. Shen, H. Yang, J. Membr. Sci. 337 (2009) 257. https://doi.org/10.1016/j.memsci.2009.03.054
  47. W. Miao, Z.K. Li, X. Yan, Y.-J. Guo, W.-Z. Lang, Chem. Eng. J. 317 (2017) 901. https://doi.org/10.1016/j.cej.2017.02.121
  48. K.C.K.S. Singh, T. Matsuura, P. Ramamurthy, J. Membr. Sci. 142 (1998) 111. https://doi.org/10.1016/S0376-7388(97)00329-3
  49. M. Luo, W. Tang, J.-q. Zhao, C.-S. Pu, J. Mater. Process. Technol. 172 (2006) 431. https://doi.org/10.1016/j.jmatprotec.2005.11.004
  50. A. Sotto, A. Boromand, R. Zhang, P. Luis, J.M. Arsuaga, J. Kim, B.V.d. Bruggen, J. Colloid Interf. Sci. 363 (2011) 540. https://doi.org/10.1016/j.jcis.2011.07.089
  51. M. Ravi Kumar, K. Scott, RSC Adv. 4 (2014) 617. https://doi.org/10.1039/C3RA42390E
  52. H. Beydaghi, M. Javanbakht, E. Kowsari, Ind. Eng. Chem. Res. 53 (2014) 11663.
  53. A. Ahmadi, O. Qanati, M.S. Seyed Dorraji, M.H. Rasoulifard, V. Vatanpour, J. Membr. Sci. 536 (2017) 86. https://doi.org/10.1016/j.memsci.2017.04.056
  54. M. Safarpour, A. Khataee, V. Vatanpour, Sep. Purif. Technol. 140 (2015) 32. https://doi.org/10.1016/j.seppur.2014.11.010
  55. P. Wang, J. Ma, Z. Wang, F. Shi, Q. Liu, Langmuir 28 (2012) 4776. https://doi.org/10.1021/la203494z
  56. V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, J. Membr. Sci. 375 (2011) 284. https://doi.org/10.1016/j.memsci.2011.03.055

Cited by

  1. Auto-cleaning functionalization of the polyvinylidene fluoride membrane by the biocidal oxine/TiO2 nanocomposite for anti-biofouling properties vol.44, pp.3, 2018, https://doi.org/10.1039/c9nj05300j
  2. Fabrication and characterization of graphene oxide–polyethersulfone (GO–PES) composite flat sheet and hollow fiber membranes for oil–water separation vol.95, pp.5, 2020, https://doi.org/10.1002/jctb.6366
  3. Tailoring the separation performance and antifouling property of polyethersulfone based NF membrane by incorporating hydrophilic CuO nanoparticles vol.37, pp.5, 2018, https://doi.org/10.1007/s11814-020-0497-2
  4. Engineering arrangement of nanoparticles within nanocomposite membranes matrix: a suggested way to enhance water flux vol.59, pp.7, 2018, https://doi.org/10.1080/25740881.2019.1695264
  5. Highly efficient photocatalytic hyperbranched polyethyleneimine/bismuth vanadate membranes for the degradation of triclosan vol.17, pp.6, 2018, https://doi.org/10.1007/s13762-020-02699-9
  6. Clarification of pomegranate juice using PSF microfiltration membranes fabricated with nano TiO2and Al2O3 vol.44, pp.8, 2018, https://doi.org/10.1111/jfpp.14559
  7. Fabrication of a Novel Nanocomposite Ultrafiltration Membrane with Improved Antifouling Properties Using Functionalized HfO2 and Polyvinylidene Fluoride for Organic Foulant Mitigation vol.59, pp.43, 2018, https://doi.org/10.1021/acs.iecr.0c03696
  8. Development of hydrophilic PES membranes using F127 and HKUST-1 based on the RTIPS method: Mitigate the permeability-selectivity trade-off vol.196, pp.None, 2021, https://doi.org/10.1016/j.envres.2021.110964
  9. Development of antifouling ultrafiltration PES membranes for concentration of hemicellulose vol.138, pp.17, 2018, https://doi.org/10.1002/app.50316
  10. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers vol.26, pp.11, 2018, https://doi.org/10.3390/molecules26113331
  11. Blended Polysulfone/Polyethersulfone (PSF/PES) Membrane with Enhanced Antifouling Property for Separation of Succinate from Organic Acids from Fermentation Broth vol.9, pp.38, 2018, https://doi.org/10.1021/acssuschemeng.1c05059
  12. Azido-group functionalized graphene oxide/polysulfone mixed matrix ultrafiltration membrane with enhanced interfacial compatibility for efficient water and wastewater treatment vol.283, pp.None, 2022, https://doi.org/10.1016/j.seppur.2021.120162