• Title/Summary/Keyword: Anti-Plane Shear

Search Result 39, Processing Time 0.019 seconds

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

Stress and Displacement Fields of a Propagating Mode III Crack in Orthotropic Piezoelectric Materials (직교이방성 압전재료에서 전파 하는 모드 III 균열의 응력장과 변위장)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.701-708
    • /
    • 2010
  • The stress and displacement fields of a permeable propagating crack in orthotropic piezoelectric materials under anti-plane shear mechanical load and in-plane electric load are analyzed. The equations of motion for the propagating crack in piezoelectric materials are developed and the solution on the stress and the displacement fields through an asymptotic analysis was obtained. The influences of the piezoelectric constant and of the dielectric permittivity on the stress and displacement fields at the crack tip are explicitly clarified. Using the stress and displacement fields obtained in this study, the characteristics of stress and displacement at a propagating crack tip in piezoelectric materials are discussed.

Unsteadily Propagating Permeable Mode III Crack in Piezoelectric Materials (압전재료에서 비정상적으로 전파하는 투과형 모드 III 균열)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.985-996
    • /
    • 2012
  • An unsteadily propagating permeable crack in piezoelectric materials (PMs) under anti-plane shear mechanical loading and in-plane electric loading is studied. The equilibrium equations for a transiently propagating crack in a PM are developed, and the solutions on the stress and displacement fields for a permeable crack though an asymptotic analysis are obtained. The influences of piezoelectric constant, dielectric permittivity, time rate of change of the crack tip speed and time rate of change of stress intensity factor on the stress and displacement fields at the transiently propagating crack tip are explicitly clarified. By using the stress and displacements, the characteristics of the stress and displacement at a transiently propagating crack tip in a PM are discussed.

Flexural and Buckling Analysis of Laminated Composite Beams with Bi- and Mono-Symmetric Cross-Sections (이축 및 일축 대칭단면 적층복합 보의 휨과 좌굴해석)

  • Hwoang, Jin-Woo;Back, Sung Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.614-621
    • /
    • 2019
  • A generalized laminated composite beam element is presented for the flexural and buckling analysis of laminated composite beams with double and single symmetric cross-sections. Based on shear-deformable beam theory, the present beam model accounts for transverse shear and warping deformations, as well as all coupling terms caused by material anisotropy. The plane stress and plane strain assumptions were used along with the cross-sectional stiffness coefficients obtained from the analytical technique for different cross-sections. Two types of one-dimensional beam elements with seven degrees-of-freedom per node, including warping deformation, i.e., three-node and four-node elements, are proposed to predict the flexural behavior of symmetric or anti-symmetric laminated beams. To alleviate the shear-locking problem, a reduced integration scheme was employed in this study. The buckling load of laminated composite beams under axial compression was then calculated using the derived geometric block stiffness. To demonstrate the accuracy and efficiency of the proposed beam elements, the results based on three-node beam element were compared with those of other researchers and ABAQUS finite elements. The effects of coupling and shear deformation, support conditions, load forms, span-to-height ratio, lamination architecture on the flexural response, and buckling load of composite beams were investigated. The convergence of two different beam elements was also performed.

Effect of flexure-extension coupling on the elastic instability of a composite laminate plate

  • H. Mataich;A. El Amrani;J. El Mekkaoui;B. El Amrani
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.391-401
    • /
    • 2024
  • The present study focuses on the effect of extension-bending coupling on the elastic stability (buckling) of laminated composite plates. These plates will be loaded under uni-axial or bi-axial in-plane mechanical loads, especially in the orthotropic or anti-symmetric cross-angle cases. The main objective is to find a limit where we can approximate the elastic stability behavior of angularly crossed anti-symmetric plates by the simple behavior of specially orthotropic plates. The contribution of my present study is to predict the explicit effect of extension-flexion coupling on the elastic stability of this type of panel. Critically, a parametric study is carried out, involving the search for the critical buckling load as a function of deformation mode, aspect ratio, plate anisotropy ratio and finally the study of the effect of lamination angle and number of layers on the contribution of extension-flexure coupling in terms of plate buckling stability. We use first-order shear deformation theory (FSDT) with a correction factor of 5/6. Simply supported conditions along the four boundaries are adopted where we can develop closed-form analytical solutions obtained by a Navier development.

Dynamic Characteristics of an Eccentric Crack in a Functionally Graded Piezoelectric Ceramic Strip

  • Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1582-1589
    • /
    • 2004
  • The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric ceramic strip under anti-plane shear impact loading is ana lysed using integral transform method. Laplace transform and Fourier transform are used to reduce the problem to two pairs of dual integral equations, which are then expressed to Fredholm integral equations of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties and electric loadings.

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie;Liu, Jinxi
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.609-623
    • /
    • 2007
  • The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.

Eccentric Crack in a Piezoelectric Strip Under Electro-Mechanical Loading

  • Lee, Kang-Yong;Shin, Jeong-Woo;Kwon, Soon-Man
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith eccentric crack off the center line under anti-plane shear loading with the theory of linear piezoelectricity. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and the energy release rate are obtained, and the influences of the electric fields for piezoelectric ceramics are discussed.

  • PDF

Transient Response of a Crack in a Functionally Graded Piezoelectric Strip between Two Dissimilar Piezoelectric Strip (두 개의 서로 다른 압전재료층 사이의 기능경사압전재료 접합층 내부 균열에 대한 과도응답 해석)

  • Shin, Jeong Woo;Lee, Young-Shin;Kim, Sung Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.206-213
    • /
    • 2013
  • Transient response of a crack in a functionally graded piezoelectric material (FGPM) interface layer between two dissimilar homogeneous piezoelectric layers under anti-plane shear is analyzed using integral transform approaches. The properties of the FGPM layer vary continuously along the thickness. Laplace and Fourier transforms are used to reduce the problem to two sets of dual integral equations, which are then expressed to the Fredholm integral equations of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGPM to show the effects on electric loading, gradient of the material properties, and thickness of the layers. Computed results yield following conclusions: (a) the DERR increases with the increase of the gradient of the material properties of the FGPM layer; (b) certain direction and magnitude of the electric impact loading impedes crack extension; (c) increase of the thickness of the FGPM layer and the homogeneous piezoelectric layer which has larger material properties than those of the crack plane are beneficial to increase of the resistance of transient fracture of the FGPM layer.

  • PDF