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Transient Response of a Crack in a Functionally Graded Piezoelectric Strip
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ABSTRACT

Transient response of a crack in a functionally graded piezoelectric material (FGPM) interface
layer between two dissimilar homogeneous piezoelectric layers under anti-plane shear is analyzed
using integral transform approaches. The properties of the FGPM layer vary continuously along the
thickness. Laplace and Fourier transforms are used to reduce the problem to two sets of dual integral
equations, which are then expressed to the Fredholm integral equations of the second kind.
Numerical values on the dynamic energy release rate (DERR) are presented for the FGPM to show
the effects on electric loading, gradient of the material properties, and thickness of the layers.
Computed results yield following conclusions: (a) the DERR increases with the increase of the
gradient of the material properties of the FGPM layer; (b) certain direction and magnitude of the
electric impact loading impedes crack extension; (c) increase of the thickness of the FGPM layer and
the homogeneous piezoelectric layer which has larger material properties than those of the crack
plane are beneficial to increase of the resistance of transient fracture of the FGPM layer.
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1. Introduction

Owing to their intrinsic electromechanical coupling
effects, piezoelectric materials have been widely used in
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smart sensors, transducers and actuators. In practical usage,
bonding of dissimilar piezoelectric layers is frequently
happened. However, the interface plane of the bonding
structure is susceptible to developing cracks because of
mismatch of material properties. Fracture analysis of
functionally graded piezoelectric materials (FGPMs) as an
interface layer has been attracted extensive attention in
order to solve the mismatch of material properties. The
FGPMs are microscopically non-homogeneous because the
mechanical properties of the FGPM vary continuously. A
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crack in the FGPM may exhibit complex behavior because
of the variation of the mechanical properties of the material.
Significant efforts have been made in the study of the
FGPMs.

A few researches concerned with the transient response of
crack in FGPMs were reported’™. And much fewer studies
have been conducted for the interface crack problem of the
FGPMs®"”. Recently, Yan and Jiang"’ and Shin and
Lee'"? studied moving crack in a FGPM interface layer
between two homogeneous piezoelectric bodies. But,
solution of transient response of a crack in a FGPM
interface layer between two dissimilar piezoelectric layers
has not been presented.

In this paper, transient response of a Griffith crack in a
FGPM
homogeneous piezoelectric layers under anti-plane shear is
analyzed. The properties of a FGPM layer vary
continuously along the thickness. The FGPM layer and two
piezoelectric layers are connected weak-discontinuously”.
Laplace and Fourier transforms are used to reduce the

interface layer between two  dissimilar

problem to two sets of dual integral equations, which are
then expressed in two Fredholm integral equations of the
second kind. Numerical results of the dynamic energy
release (DERR) are presented graphically to show the
effects on electric loading, gradient of material properties,
and thickness of layers.

2. Problem statement and formulation

Consider a FGPM interface layer containing a finite
eccentric crack sandwiched between two homogeneous
piezoelectric layers, which is subjected to the combined
mechanical and electrical Heaviside step pulse loadings as
shown in Fig. 1. The Cartesian coordinates ( x,y,z) are
attached to the center of the crack. The FGPM and
homogeneous piezoelectric layers are poled with z -axis,
and are thick enough in the z -direction to allow a state of
anti-plane shear. The FGPM layer occupies the region,
—o<x<o , —h<y<h , 2h=h+h, . For
convenience, we assume that the upper (y >0, thickness
hy) and lower ( y <0, thickness #, ) regions of the FGPM

layer cracked have different thickness but consist the same
FGPMs. The crack is situated along the virtual interface line
(-a<x<a, y=0). Due to the symmetry in geometry
and loading, it is sufficient to consider the right-hand half
body only.

x Piezoelectric Layer I

\ :
T H(t
)hl ©® ®0®() FGPM

mxuyﬂ
[T

hs D H(t)

l Piezoelectric Layer I1

Fig. 1 Definition of geometry and loading

We assume that the properties of the FGPM layer vary
smoothly and continuously along the thickness and are

simplified as follows"'?:

Caq = Cago €Xp(BY) , dyy = dyjpexp(By),
es = eso exp(fBy) . p = poexp(fBy) ey

where ¢,,, dy;, 5 and p are the elastic modulus,
dielectric permittivity, piezoelectric constant and material
density, respectively. ¢y, dy0, €5 and p, are the
material properties at y=0 and B is the non-
homogeneous material constant. The material properties are
the same values at y=5 and y=-h, for the FGPM
layer and the homogeneous piezoelectric layers.

The piezoelectric boundary value problem is simplified
considerably if we consider only the out-of-plane
displacement and the in-plane electric fields such that

ul =ul; =0, ul =w (x,,0 2)
EL=EL(opt), Ef =EL(xp.0), EL =0 (3)
ug =y =0, ull =w/ (x,y.0) @

Ell =Ell (x,p,t), Ell =Ell(x,y.0), E =0 (5

1 1

where u, and E, (k=x,y,z)are the displacements

and electric fields, respectively. Superscripts F  and
H stand for a FGPM layer and the homogeneous
piezoelectric layers, respectively. And subscript (i =1,2)
stands for upper and lower regions, respectively, for both
FGPM layer and homogeneous piezoelectric layers.

In this case, the constitutive relations become

F F F
07 (X, p.t) = cyuw;; +eisd (6)
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F F F
D (x,p,t) = esW —dy i j Q)
H H H
07 (X, 3,0) = cuw;; + 15,8, ®)

DJI-? (3,0 = elSiWiI,{/' _dlli¢i[:§' (O]

where o, D;, (j=x,y) and ¢, are the stress

components, electric displacements and electric potential,
respectively. ¢y, dy;, es and p; are the material

properties for the homogeneous piezoelectric layers.
The dynamic anti-plane governing equations for FGPM
and homogeneous piezoelectric material are simplified to

2 F 2, F
cuVow; +e5V7,

ow! o *wr (10)

+P(cy——+e =p—»>
Bley oy 15 6y) P o
elSV2WiF _d11V2¢iF

ow’ oo (11)
+ Bles —dy, ¢ )=0

oy oy

o*wH

V2w +e5 Vg = p, 6t21 (12)
elSiVZWiH _dllivz¢iH =0 (13)

where V2 =02/ox? +0%/oy* .
The Laplace transforms of Egs. (10) ~ (13) are the
followings:

Vi g = Pl (14)
Y Cy
2 al//iF*
Vil p <o (15)
oy
2
e (16)
€2
Vzl//,-H* =0 (17)
where
WG p)= [ w rynexppnds (19)

v, Gt == [l pexp(pidp - (19)
Tl ¥ c—io
4 (e yp) = [ 6, (rynyexp(pods 0)

1 ction
gy =5 gy peppndy Q1)
T Y c—io

5

* * e,
v =¢ _ﬂwi (22)
dll()

¢ :\jﬂo/po > My =Cag +61502/d110 (23)

and c, is the shear wave velocity and p, is

piezoelectrically stiffened elastic constant at the crack plane.
The superscript * stands for the Laplace transform domain.

Fourier transforms are applied to Egs. (14) ~ (17), and the
results are as follows:

F* _ 2 A,;(s, p)exp(—q,y) ) 24
w; (x,y,p) = . j.o {‘F (5. P)exp(gay) | cos(sx)ds (29
F* 72 €50 [~ AI[(S’p)exp(_qu) § §
¢ (rp)= 7 dy, .[0 L Ay, (s,p)exp(qzy)}C()S(M)dA (25)

cos(sx)ds

+£j°° { By (s, p)exp(=p,y) |
70 | +By(s, p)exp(p,y) |

wi (x,y.p) = 2‘[:{ 4i(5-p) exp(_}y):|cos(sx)ds (26)

70 |+ 4,(s, p)exp(p)
P _ 2 e (] Aui(s:p)exp(=pp)
o= 7 dyy, J.O L’ Ay (S’P)CXP(W))}COS(SXMS (27)
+£r€ Bu(s)exp(-sy) cos(sx)ds
79 | + B, (s)exp(sy)
where
¢ =6+pB/2, 9,=5-p/2,
p=A+ B2, py=A-p)2 (28)
S=\y2+ B4, A=ys’+p/4 (29)

y=yls’+p/c} (30)

Ay Ays Ays Ay, By, By, By and By are the
unknowns to be solved.

In this case, the stress and electric displacement
components are as follows:

i e
olLyp)= )

— 44, (s, p)exp(=¢,¥)

+q,45; (s, p)exp(q,y)

+e EJ-OL = 1By (s, p)exp(=p,y)
B0z do |+ p,B,, (s)exp(p,y)

:| cos(sx)ds G31)

} cos(sx)ds

T

" 2w
D;’ (xay,l’):_dno*_[o{

_ plBIi(s,p)eXp(—l’z)’)} cos(sx)ds 32)
7

+ Py By (s, p)exp(pyy)

2 Iw{— s, (s, p)exp(=p)
0 | +744(s, p)exp(y)
2 ro| =8By (s, p)exp(-sy)

15 ;-[0 L sB,; (s, p)exp(sy)

ol (. p)= 1 =~ }cos(sx)ds

(33)
} cos(sx)ds
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5By (s, ) exp(~ Sy)} cos(sx)ds (34)

2
DY oy ==dui =, Ls&,(s P)exp(sy)

where
2
Hi =Cyyi Fe5; /dlli . (35)
The mixed boundary conditions can be written as

(0<x<a)  (36)

(a<x<o) 37
(0<x<a) (38)

(a<x<w) 39)

ol (x0.p)==7,/p,
wi (507, p)=w; (x,07,p),
DS (x.0,p)==Dy/p
8 (20", p)=¢" (x.07.p) ,

where 7, and D, are the uniform shear traction and

electric displacement, respectively.
It is convenient to use the following definitions:

All(s’p)_AIZ(S9p)+AZI(S’p)_Azz(S5p) = A(S’p) (40)
By (s, p) = By, (s, p) + By, (s, p) = By, (s, p) = B(s, p) .(41)

The two mixed boundary conditions of Egs. (36) to (39)
lead to two sets of dual integral equation in the following
forms:

JmosEM A(s, p)cos(sx)ds
0 s Ly(s,p)

€150

_Doj

dyyo

(0<x<a),
721 (
==+
IwA(s, p)cos(sx)ds=0

2 p Hy
(a<x<w)  (42)

J.O Y ((S)) B(s, p)cos(sx)ds

7r2DO

2 pdy

(0<x<a),

J?B(s,p) cos(sx)ds=0, (a<x<o) (43)

where

Li(s, p)=[q:{C, (s, p) + 1 Cy (s, p)}
— 5 exp(=20m ){kCy, (s, p) + 11 Cyy (s, P)}]
x [k exp(=2yh, )1 = exp(=261,)) D, (s, p)
+1(1 = kexp(=26h,)) D, (s, p)]

(44)

Ly (s, p)= (1+ b)[k exp(=2yh,)C,, (5, p) Dy (s, p)(1 - exp(-45h))
+1Cyy(s, p)Dyy (s, p)(1 - k exp(=4h)) (45)
+17exp(—27h,)Cyy (s, p) Dy (5, p)(k — exp(-45h))
+17°Cyy (5, )Dsyy (s, p)(1 ~ exp(~45h))]

M, ($)=[p{C1(s)+ 5 Cp(5)}

= P2 exp(2A){fC 5 (5) + 6 Cyy (5)}]
x[f exp(=2sh, )1 - exp(=24h,)) Dy, (5)
+¢(1= fexp(=241,))Dy, ()]

M, (s)=(1+ /LS exp(=25hy)C1, (s) Dy, (s)(1 - exp(—44h))
+6Cia()Dyy (s)(1 - f exp(—41h)) (47)

+gexp(=2sh,)Coy () Dy, (s)(f — exp(—44h))
+67Cyy (5)Dyy (5)(1 - exp(~44h))]
k=q/q,, f=pi[p2> n=7/42, 5=5/p; (43)
Ci(s, p)=1+exp(=2yh3) , Cy (s, p)=1-exp(-2;)
Dy (s, p)=1+exp(=27h) , Dy (s, p)=1-exp(2ph,)  (49)
Cyy(s)=1+exp(-2sh;), Cy(s)=1-exp(-2sh;),
Dy, (s)=1+exp(-2sh,), D,,(s)=1-exp(-2sh,). (50)

(46)

To solve the two sets of dual integral equation of Egs.
(42) and (43), we define A(s,p) and B(s,p) in the

forms,

2
A p=Z 2 5 422 py [ VE W] (@ p)y(@E)dE
2 p dyyo
x 2 a*D
B(s.p)=--———

o j VE W (E),(asE)dE (51)

where J, is the zero-order Bessel function of the first
kind.

By inserting Eq. (51) into Egs. (42) and (43), we can find
that the auxiliary functions \Pl* E,p) and ‘Pz* (B) are
given by the Fredholm integral equations of the second kind
in the following forms:

* 1 *
¥ (Ep)+ [ N(EH P HpdH=VE (5

GE [ MEDLHENE ()

where

N, (5,H,p)=ﬁrs[% f‘g“’p) 71}J0(SH)J0(SE)dS (54)
2

N,(E.H)= ﬁf [2 M, (ija))—l}Jo(SH)JO(SE)dS (55)
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s s s
Li(—=,p)=[9{C (=, p) +1Cy (=, p)}
a a a
h s s
=0, exp(-2A —1) {kCy (=, p)+11Cy (=, p)}]
a a a (56)
h, h S
x[kexp(-2I' —=)(1 - exp(-2A—=))D,, (—, p)
a a a
h s
+n(1-kexp(=2A 72))1321 (;,P)]
h
L,E, py=a+bkep2r2)c, S,y S, p)i - expr-an
a a a a a
10y PDy P kexp(—4A§)) (57)
;
snepcarye, &, S, pk-exp—aaly
a a a a
17 Cy DS p)I - exp(-aa )
a a a

M, (5) ~[RC, (g) + o, (%)}

h
-P, exp(2A—){f CIZ(E) + Q'sz(g)}]
a a a

(58)
h h S
XLf exp(-28 “2)(1 - exp(-2A“2)D;y (5
a a a
h S
#5(1- f exp(-2A ) Dy (2]
h,
M) =14 L xp25 0D - expl-4A )
+6CDu - fexpi-an’y (59)
a a a

h S N I
+¢exp(=28 —2)Coy (Z)Dy, (H)(f — exp(—4A—))
a a a a
S N h
+62C (F)Dy (F)(1 - exp(~4A )]
a a a
S h s i
Ci(=,p)=1+exp(-2 =), Cy(=,p)=1-exp(-2r =),
a a a P
$ h
Dy p=1+ep2r=), Dy (S, py=i-exp-ar ™) (60)
a a a P

N h N h
Cp(5)=1+exp(-252) , Cp(=)=1-exp(-25=)
a a a a

DaCy=tvep25™), Dy Sye1-expras™y  (61)
a a a a

A=\T2+B%/4, A=y/s*+B*/4,

=yS%+p*/(c,/a) (62)

0,=A+B/2, Q,=A-B/2,

P=A+B/2, P,=A-B/2 (63)
k=0,/0,, f=R/P,, n=T/0,, ¢=S/P, (64)
S=as , B=ap. (65)

By evaluating the dynamic energy release rate G, (¢)

for the anti-plane case obtained by Pak™

small contour at a crack tip, we can obtain the following

on a vanishingly

form:

KT (OK” (t) - K2 ()KE (1)

Gy ()= >
2 (66)
=22 %0 p | Lo -2 (w;a
2 {(To+d110 OJ IUO( ()) dllO( Z())Z
where
1 petio P 1,
G (©7)
27” c—in p

in which the functions ‘Pl*(l, p) and ‘{’2*(1) can be
calculated from Egs. (52) and (53).

3. Discussions

To investigate the effects on the electric loading, gradient
of the material properties and thickness of layers on the
DERR, numerical analyses are carried out. The DERR is

normalized by G, =7ra2'02 /(2,uo) . The normalized

electric displacement is determined as
ND, =e,50D, [(d,197,) - It is assumed that the material
properties at y=0 are the same as those of PZT-5H as

follows"®:

Cago =2.3x10"° N/m* | €5, =17.0 C/m*,
dyyo =150.4x107° C/Vm

From Figs. 2 to 7, a general feature of the curves is
observed. The DERR rises rapidly with time, reaching a
peak then decreases in magnitude to reaches its static value.

Fig. 2 presents variation of the normalized DERR
G, 1)/G,, against the normalized time c¢,¢/a with the
various normalized non-homogeneous material constant of
the FGPM layer. The Peak value of DERR increases and
the DERR rises more rapidly with time when the gradient
of material properties of the FGPM interface layer increases.
Also the peak value of DERR of the FGPM interface layer
is higher than that of homogeneous piezoelectric material
(B =0). Though the DERR in the FGPM is increased, this
deleterious effect is completely offset by the high fracture
toughness of the FGPM, and as a result, the residual
strength of the cracked FGPM is much higher than that of
the homogeneous piezoelectric ceramic''”.

Fig. 3 displays variation of the normalized DERR
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G, (1)/G,, against the normalized time c,¢/a with the

various normalized electric displacement ND,, . The peak

value of DERR increases or decreases and the DERR rises
rapidly or slowly with time depending on direction and
magnitude of the electric impact loading. And the sign of
DERR is negative for certain electric impact load. That
means the certain electric impact loading impedes crack

extension. In addition, the normalized DERRs are same for
the same definite electric impact loadings at c,t/a=0.

These results agree with those of researches adopted the
(18-20)

impermeable crack boundary condition

G (8)/Goo

ct/a

Fig. 2 Variation of the normalized DERR G, (¢)/G,,
with ¢,t/a for various B

G (t)/Gos

Fig. 3 Variation of the normalized DERR G, (1)/G,,
with c,t/a for various ND,

— hy/a=10,h/a=10
————— hyfa=2.0,hy/a=10
- - = hy/a=30h/a=10
-= hy/a=40h/a=10

G (t)/Goo

0 2 4 6 8 10 12
ct/a

Fig. 4 Variation of the normalized DERR G, (1)/G,,
with c,t/a for various h/a

— hy/a=10,hy/a =10
————— hy/a=10,hy/a =20
- == hy/a=10,hy/a =30
-= hyja=10,hy/a =40

G (t)/Goo

0 2 4 6 8 10 12
ct/a

Fig. 5 Variation of the normalized DERR G, (1)/G,,

with c¢,t/a for various h,/a

—— hy/a =0.1,hy/a =100
————— hy/a =1.0,hyfa =10.0
- - = hyfa=20,hy/a =100
--= hy/a=10.0,hs/a =100

~
—
[t S ————

G (t)/Goo

0 2 4 6 8 10 12
ct/a

Fig. 6 Variation of the normalized DERR G, (1)/G,,

with cyt/a for various hy/a

-~ hyfa=100,hs/a =100

N - == hy/a=100,hy/a =20
6 / ‘-‘\‘;\ ----- hs/a=10.0,hy/a = 1.0
s RN —— hs/a=100,hy/a=01

Gy (t)/Geo

ct/a

Fig. 7 Variation of the normalized DERR G, (1)/G,,

with cyt/a for various h,/a

Fig. 4 and Fig. 5 show variation of the normalized DERR
G, (1)/G,, against the normalized time c¢,¢/a with the
various normalized thickness of the FGPM interface layer.
The peak value of DERR decreases with the increase of the
thickness of the FGPM interface layer. In the other word,
increase of the FGPM interface layer is helpful to increase
of the resistance of transient fracture of the FGPM interface
layer.

Fig. 6 and Fig. 7 show variation of the normalized DERR
G, (1)/G,, against the normalized time c¢,¢/a with the

various normalized thickness of the homogeneous
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piezoelectric layers. The peak value of DERR decreases
with the increase of the thickness of the upper
homogeneous piezoelectric layer ( /; /a ). On the contrary,
the peak value of DERR increases with the increase of the
thickness of the lower homogeneous piezoelectric layer
(hy/a). Material properties of the upper homogeneous
piezoelectric layer are bigger than those of the crack plane,
but material properties of the lower homogeneous
piezoelectric layer are less than those of the crack plane.
That is, increase of the thickness of the layer which has
larger material properties than those of the crack plane is
beneficial to increase of the resistance of transient fracture
of the FGPM interface layer.

From Fig. 4~Fig. 7, variations of the peak value of the
DERR are not sensitive to the variations of the thickness of
the layers which have bigger material properties than those
of the crack plane (#,/a and hy/a). But variations of
peak value of the DERR are sensitive to variations of the
thickness of the layers which have smaller material
properties than those of the crack plane ( 4,/a and
hy/a). However, over certain value of the normalized

thickness of the layers (about 3.00), the effect of variation
of the peak value of the DERR is negligible.

4. Conclusions

The problem of transient response of a crack in a FGPM
interface layer between two dissimilar homogeneous
piezoelectric layers under anti-plane shear loading was
analyzed by the integral transform approach. The material
properties of the FGPM interface layer vary continuously
along the thickness. The Fredholm integral equations were
solved numerically. The following conclusions can be
made:

® Peak value of the DERR increases and the DERR rises
more rapidly with time as the gradient of the material
properties of the FGPM interface layer increases

® Peak value of the DERR increases or decreases and the
DERR rises rapidly or slowly with time depending on
direction and magnitude of the electric impact loading.
Certain direction and magnitude of the electric impact
loading impedes crack extension

® Increase of the thickness of the FGPM interface layer
and the homogeneous piezoelectric layer which has
larger material properties than those of the crack plane

are helpful to increase of the resistance of transient
fracture of the FGPM interface layer. Over certain
thickness of the layers, thickness effect on the DERR is
negligible.
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