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ABSTRACT 

Transient response of a crack in a functionally graded piezoelectric material (FGPM) interface 
layer between two dissimilar homogeneous piezoelectric layers under anti-plane shear is analyzed 
using integral transform approaches. The properties of the FGPM layer vary continuously along the 
thickness. Laplace and Fourier transforms are used to reduce the problem to two sets of dual integral 
equations, which are then expressed to the Fredholm integral equations of the second kind. 
Numerical values on the dynamic energy release rate (DERR) are presented for the FGPM to show 
the effects on electric loading, gradient of the material properties, and thickness of the layers. 
Computed results yield following conclusions: (a) the DERR increases with the increase of the 
gradient of the material properties of the FGPM layer; (b) certain direction and magnitude of the 
electric impact loading impedes crack extension; (c) increase of the thickness of the FGPM layer and 
the homogeneous piezoelectric layer which has larger material properties than those of the crack 
plane are beneficial to increase of the resistance of transient fracture of the FGPM layer. 

 
본 논문에서는  적분변환법을  이용하여  면외전단 충격하중이  작용하는  두 개의  서로  다른  압

전재료층  사이의  기능경사압전재료  접합층  내부  균열에  대한  과도응답  해석 을 수행한다 . 기능

경사압전재료의  물성치는  두께 방향을  따라  연속적으로  변하는  것으로  가정한다 . 라플라스  변

환과  푸리에  변환을  이용하여  문제를  복합적분방정식으로  구성하고 , 수치해석을  위해 복합적

분방정식을 제 2 종 프레드홀름  적분방정식으로  표현한다 . 전기적  하중 , 재료물성 치의 변화율 , 

각 접합층의  두께가  균열의  과도응답에  미치는  영향을  보기  위해  동에너지  해방률에  대한  수

치해석  결과를  제시한다 . 

 

1. Introduction 
§
 

Owing to their intrinsic electromechanical coupling 
effects, piezoelectric materials have been widely used in 
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smart sensors, transducers and actuators. In practical usage, 
bonding of dissimilar piezoelectric layers is frequently 
happened. However, the interface plane of the bonding 
structure is susceptible to developing cracks because of 
mismatch of material properties. Fracture analysis of 
functionally graded piezoelectric materials (FGPMs) as an 
interface layer has been attracted extensive attention in 
order to solve the mismatch of material properties. The 
FGPMs are microscopically non-homogeneous because the 
mechanical properties of the FGPM vary continuously. A 

한국소음진동공학회 2013년 추계학술대회논문집, pp. 206~213

-206-



   
 

crack in the FGPM may exhibit complex behavior because 
of the variation of the mechanical properties of the material. 
Significant efforts have been made in the study of the 
FGPMs. 

A few researches concerned with the transient response of 
crack in FGPMs were reported(1~4). And much fewer studies 
have been conducted for the interface crack problem of the 
FGPMs(5~10). Recently, Yan and Jiang(11) and Shin and 
Lee(12) studied moving crack in a FGPM interface layer 
between two homogeneous piezoelectric bodies. But, 
solution of transient response of a crack in a FGPM 
interface layer between two dissimilar piezoelectric layers 
has not been presented.  

In this paper, transient response of a Griffith crack in a 
FGPM interface layer between two dissimilar 
homogeneous piezoelectric layers under anti-plane shear is 
analyzed. The properties of a FGPM layer vary 
continuously along the thickness. The FGPM layer and two 
piezoelectric layers are connected weak-discontinuously(13). 
Laplace and Fourier transforms are used to reduce the 
problem to two sets of dual integral equations, which are 
then expressed in two Fredholm integral equations of the 
second kind. Numerical results of the dynamic energy 
release (DERR) are presented graphically to show the 
effects on electric loading, gradient of material properties, 
and thickness of layers. 

2. Problem statement and formulation 

Consider a FGPM interface layer containing a finite 
eccentric crack sandwiched between two homogeneous 
piezoelectric layers, which is subjected to the combined 
mechanical and electrical Heaviside step pulse loadings as 
shown in Fig. 1. The Cartesian coordinates ( zyx ,, ) are 
attached to the center of the crack. The FGPM and 
homogeneous piezoelectric layers are poled with z -axis, 
and are thick enough in the z -direction to allow a state of 
anti-plane shear. The FGPM layer occupies the region, 

¥<<-¥ x , 12 hyh ££- , 212 hhh += . For 
convenience, we assume that the upper ( 0³y , thickness 

1h ) and lower ( 0£y , thickness 2h ) regions of the FGPM 

layer cracked have different thickness but consist the same 
FGPMs. The crack is situated along the virtual interface line 
( 0, =££- yaxa ). Due to the symmetry in geometry 

and loading, it is sufficient to consider the right-hand half 
body only. 

y
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Fig. 1 Definition of geometry and loading 

 
We assume that the properties of the FGPM layer vary 

smoothly and continuously along the thickness and are 
simplified as follows(14):  

 
)exp(44044 ycc b= , )exp(11011 ydd b= , 
)exp(15015 yee b= , )exp(0 ybrr =           (1) 

 
where 44c , 11d , 15e  and r  are the elastic modulus, 

dielectric permittivity, piezoelectric constant and material 
density, respectively. 440c , 110d , 150e  and 0r  are the 
material properties at 0=y  and b  is the non-
homogeneous material constant. The material properties are 
the same values at 1hy =  and 2hy -=  for the FGPM 

layer and the homogeneous piezoelectric layers. 
The piezoelectric boundary value problem is simplified 

considerably if we consider only the out-of-plane 
displacement and the in-plane electric fields such that  
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where kiu  and kiE  ( zyxk ,,= ) are the displacements 

and electric fields, respectively. Superscripts F  and 
H stand for a FGPM layer and the homogeneous 
piezoelectric layers, respectively. And subscript )2,1( =ii  

stands for upper and lower regions, respectively, for both 
FGPM layer and homogeneous piezoelectric layers. 

In this case, the constitutive relations become 
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where zjis , jiD , ( yxj ,= ) and if  are the stress 

components, electric displacements and electric potential, 
respectively. ic44 , id11 , ie15  and ir  are the material 

properties for the homogeneous piezoelectric layers. 
The dynamic anti-plane governing equations for FGPM 

and homogeneous piezoelectric material are simplified to  
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where 22222 yx ¶¶+¶¶=Ñ . 

The Laplace transforms of Eqs. (10) ~ (13) are the 
followings: 
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and 2c  is the shear wave velocity and 0m  is 

piezoelectrically stiffened elastic constant at the crack plane. 
The superscript * stands for the Laplace transform domain. 

Fourier transforms are applied to Eqs. (14) ~ (17), and the 
results are as follows: 
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where  

21 bd +=q , 22 bd -=q , 
21 bl +=p  , 22 bl -=p                  (28) 
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iA1 , iA2 , iA3 , iA4 , iB1 , iB2 , iB3  and iB4  are the 

unknowns to be solved. 
In this case, the stress and electric displacement 

components are as follows: 
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where  
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The mixed boundary conditions can be written as  
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where 0t  and 0D  are the uniform shear traction and 

electric displacement, respectively. 
It is convenient to use the following definitions: 
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The two mixed boundary conditions of Eqs. (36) to (39) 

lead to two sets of dual integral equation in the following 
forms: 
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where  
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To solve the two sets of dual integral equation of Eqs. 

(42) and (43), we define ),( psA  and ),( psB in the 
forms, 
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where 0J  is the zero-order Bessel function of the first 

kind. 
By inserting Eq. (51) into Eqs. (42) and (43), we can find 

that the auxiliary functions ),(*
1 pXY  and )(*

2 XY  are 

given by the Fredholm integral equations of the second kind 
in the following forms: 

 

X=HHYHX+XY ò dppNp
1

0

*
11

*
1 ),(),,(),(    (52) 

X=HHYHX+XY ò dN
1

0

*
22

*
2 )(),()(        (53) 

 
where  
 

dSSJSJ
paSL
paSL

S
SpN )()(1

),(
),(2),,( 00

0 2

1
1 XHú

û

ù
ê
ë

é
-XH=HX ò

¥ (54) 

dSSJSJ
aSM
aSM

S
SN )()(1

)(
)(2),( 00

0 2

1
2 XHú

û

ù
ê
ë

é
-XH=HX ò

¥  (55) 

-209-



   
 

)],())2exp(1(

),())2exp(1)(2exp([

)}],(),(){2exp(

)},(),({[),(

21
2

11
22

2111
1

2

211111

p
a
SD

a
hk

p
a
SD

a
h

a
hk

p
a
SCp

a
SkC

a
hQ

p
a
SCp

a
SCQp

a
SL

D--+

D--G-´

+D--

+=

h

h

h

  (56) 

))]4exp(1)(,(),(

))4exp()(,(),()2exp(

))4exp(1)(,(),(

))4exp(1)(,(),()2exp()[1(),(

2121
2

1121
2

2111

1111
2

2

a
hp

a
SDp

a
SC

a
hkp

a
SDp

a
SC

a
h

a
hkp

a
SDp

a
SC

a
hp

a
SDp

a
SC

a
h

kkp
a
SL

D--+

D--G-+

D--+

D--G-+=

h

h

h (57) 

)]())2exp(1(

)())2exp(1)(2exp([

)}]()(){2exp(

)}()({[)(

22
2

12
22

2212
1

2

221211

a
SD

a
hf

a
SD

a
h

a
hSf

a
SC

a
SCf

a
hP

a
SC

a
SCP

a
SM

L--+

L---´

+L--

+=

V

V

V

     (58) 

))]4exp(1)(()(

))4exp()(()()2exp(

))4exp(1)(()(

))4exp(1)(()()2exp()[1()(

2222
2

1222
2

2212

1212
2

2

a
h

a
SD

a
SC

a
hf

a
SD

a
SC

a
h

S

a
hf

a
SD

a
SC

a
h

a
SD

a
SC

a
h

Sff
a
SM

L--+

L---+

L--+

L---+=

V

V

V  (59) 

)2exp(1),( 3
11 a

h
p

a
SC G-+= , )2exp(1),( 3

21 a
h

p
a
SC G--= , 

)2exp(1),( 4
11 a

h
p

a
S

D G-+= , )2exp(1),( 4
21 a

h
p

a
SD G--=   (60) 

)2exp(1)( 3
12 a

h
S

a
SC -+= , )2exp(1)( 3

22 a
h

S
a
SC --= , 

)2exp(1)( 4
12 a

h
S

a
SD -+= , )2exp(1)( 4

22 a
h

S
a
SD --=      (61) 

422 B+G=D , 422 B+=L S , 

2
2

22 )/( acpS +=G                       (62) 
21 B+D=Q , 22 B-D=Q , 
21 B+L=P , 22 B-L=P                     (63) 

21 QQk = , 21 PPf = , 2QG=h , 2PS=V       (64) 
asS =  , ba=B .                           (65) 

 
By evaluating the dynamic energy release rate )(tGIII  

for the anti-plane case obtained by Pak(15) on a vanishingly 
small contour at a crack tip, we can obtain the following 
form: 
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where 
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in which the functions ),1(*

1 pY  and )1(*
2Y  can be 

calculated from Eqs. (52) and (53).  

3. Discussions 

To investigate the effects on the electric loading, gradient 
of the material properties and thickness of layers on the 
DERR, numerical analyses are carried out. The DERR is 
normalized by )2( 0

2
0 mtpaG =¥ . The normalized 

electric displacement is determined as 
)( 011001500 tdDeND = . It is assumed that the material 

properties at 0=y  are the same as those of PZT-5H as 
follows(16): 
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VmCd /104.150 10
110
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From Figs. 2 to 7, a general feature of the curves is 

observed. The DERR rises rapidly with time, reaching a 
peak then decreases in magnitude to reaches its static value. 

Fig. 2 presents variation of the normalized DERR 
¥GtGIII )(  against the normalized time atc /2  with the 

various normalized non-homogeneous material constant of 
the FGPM layer. The Peak value of DERR increases and 
the DERR rises more rapidly with time when the gradient 
of material properties of the FGPM interface layer increases. 
Also the peak value of DERR of the FGPM interface layer 
is higher than that of homogeneous piezoelectric material 
( 0=B ). Though the DERR in the FGPM is increased, this 
deleterious effect is completely offset by the high fracture 
toughness of the FGPM, and as a result, the residual 
strength of the cracked FGPM is much higher than that of 
the homogeneous piezoelectric ceramic(17). 

Fig. 3 displays variation of the normalized DERR 
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¥GtGIII )(  against the normalized time atc /2  with the 
various normalized electric displacement 0ND . The peak 

value of DERR increases or decreases and the DERR rises 
rapidly or slowly with time depending on direction and 
magnitude of the electric impact loading. And the sign of 
DERR is negative for certain electric impact load. That 
means the certain electric impact loading impedes crack 
extension. In addition, the normalized DERRs are same for 
the same definite electric impact loadings at 0/2 =atc . 

These results agree with those of researches adopted the 
impermeable crack boundary condition (18~20). 
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Fig. 2 Variation of the normalized DERR ¥GtGIII )(  
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Fig. 3 Variation of the normalized DERR ¥GtGIII )(  
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Fig. 4 Variation of the normalized DERR ¥GtGIII )(  

with atc2  for various ah /1  
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Fig. 5 Variation of the normalized DERR ¥GtGIII )(  

with atc2  for various ah /2  
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Fig. 6 Variation of the normalized DERR ¥GtGIII )(  

with atc2  for various ah /3  
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Fig. 7 Variation of the normalized DERR ¥GtGIII )(  

with atc2  for various ah /4  

 
Fig. 4 and Fig. 5 show variation of the normalized DERR 

¥GtGIII )(  against the normalized time atc /2  with the 

various normalized thickness of the FGPM interface layer. 
The peak value of DERR decreases with the increase of the 
thickness of the FGPM interface layer. In the other word, 
increase of the FGPM interface layer is helpful to increase 
of the resistance of transient fracture of the FGPM interface 
layer. 

Fig. 6 and Fig. 7 show variation of the normalized DERR 
¥GtGIII )(  against the normalized time atc /2  with the 

various normalized thickness of the homogeneous 
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piezoelectric layers. The peak value of DERR decreases 
with the increase of the thickness of the upper 
homogeneous piezoelectric layer ( ah /3 ). On the contrary, 

the peak value of DERR increases with the increase of the 
thickness of the lower homogeneous piezoelectric layer 
( ah /4 ). Material properties of the upper homogeneous 

piezoelectric layer are bigger than those of the crack plane, 
but material properties of the lower homogeneous 
piezoelectric layer are less than those of the crack plane. 
That is, increase of the thickness of the layer which has 
larger material properties than those of the crack plane is 
beneficial to increase of the resistance of transient fracture 
of the FGPM interface layer. 

From Fig. 4~Fig. 7, variations of the peak value of the 
DERR are not sensitive to the variations of the thickness of 
the layers which have bigger material properties than those 
of the crack plane ( ah /1  and ah /3 ). But variations of 

peak value of the DERR are sensitive to variations of the 
thickness of the layers which have smaller material 
properties than those of the crack plane ( ah /2  and 

ah /4 ). However, over certain value of the normalized 

thickness of the layers (about 3.00), the effect of variation 
of the peak value of the DERR is negligible. 

4. Conclusions 

The problem of transient response of a crack in a FGPM 
interface layer between two dissimilar homogeneous 
piezoelectric layers under anti-plane shear loading was 
analyzed by the integral transform approach. The material 
properties of the FGPM interface layer vary continuously 
along the thickness. The Fredholm integral equations were 
solved numerically. The following conclusions can be 
made: 

 
l Peak value of the DERR increases and the DERR rises 

more rapidly with time as the gradient of the material 
properties of the FGPM interface layer increases 

l Peak value of the DERR increases or decreases and the 
DERR rises rapidly or slowly with time depending on 
direction and magnitude of the electric impact loading. 
Certain direction and magnitude of the electric impact 
loading impedes crack extension 

l Increase of the thickness of the FGPM interface layer 
and the homogeneous piezoelectric layer which has 
larger material properties than those of the crack plane 

are helpful to increase of the resistance of transient 
fracture of the FGPM interface layer. Over certain 
thickness of the layers, thickness effect on the DERR is 
negligible. 
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