• Title/Summary/Keyword: Antenna Dispersion

Search Result 35, Processing Time 0.027 seconds

Leaky Dispersion Characteristics in Circular Dielectric Rod Using Davidenko's Method

  • Kim Ki Young;Tae Heung-Sik;Lee Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.72-79
    • /
    • 2005
  • The leaky dispersion characteristics of a circular dielectric rod were investigated using Davidenko's method for several lower-order transverse magnetic(TM) modes. The normalized complex propagation constants were precisely determined and their tolerances below $10^{-10}$ compared with zero for both real and imaginary parts. It was also checked whether the normalized complex propagation constants obtained represented forward leaky waves. The leaky modes existing below the cutoff frequency of the guided mode were classified as a nonphysical mode, reactive mode, antenna mode, and spectral gap based on a precise determination of the complex propagation constants. Finally, the effects of the dielectric constant and radius of the dielectric rod on the leaky dispersion characteristics were also considered.

Compact Spiral Zeroth-order Resonance Antenna using metamaterial transmission line (메타물질 전송선로를 이용한 소형 나선구조 Zeroth-order Resonance 안테나)

  • Park, Jae-Hyun;Ryu, Young-Ho;Kim, Dong-Jin;Choo, Ho-Sung;Lee, Jeong-Hae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.1-6
    • /
    • 2007
  • In this paper, the spiral zeroth-order resonance (ZOR) antenna using composite right- and left-handed (CRLH) transmission line is proposed. The zeroth-order resonant characteristics of the antenna are described by dispersion relation of a periodic structure. The size of the $2{\times}2$ spiral ZOR antenna is $0.155{\lambda}_{0}{\times}0.155{\lambda}_{0}$. By increasing shunt inductance of CRLH transmission line, the size of this antenna is reduced by 65% compared with that of a mushroom ZOR antenna. The radiation pattern of this antenna have omnidirectional pattern which is similar to that of mushroom ZOR antenna.

Investigation of Influences of UWB Antennas on Impulse Radio Channel (임펄스 전파 채널에서의 초광대역 안테나 영향 연구)

  • Park Young-Jin;Song Jong-Hwa;Kim Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.165-170
    • /
    • 2005
  • In this paper, influences of a ultra wideband (UWB) antenna on impulse channel measurement are investigated in time domain (TD) and frequency domain (FD) as well. Firstly, impulse response of an UWB antenna is obtained and then using the result of impulse response of the UWB antenna, influences of the antenna on impulse radio channel is analyzed. Furthermore, using the impulse response of the UWB anenna, method of impulse radio channel analysis is presented by excluding the effect of the antenna from an impulse radio channel. For verifying the theory, a modified conical monopole antenna is designed for measuring impulse radio channel and its impulse response is obtained. After that, in order to investigate the effects of the UWB antenna on an impulse radio channel, multipath environments are set up in an anechonic chamber and transmission coefficient for each multipath environment is measured with an aid of vector network analyzer. Data measured in frequency domain is transformed into those in time domain by way of signal processing. Measurement shows that such properties of the antenna as dispersion and ringing affect impulse radio channel. Moreover, using the impulse response of the antenna, impulse response of only multipath channel is obtained.

Scattering characteristics of metal and dielectric optical nano-antennas

  • Ee, Ho-Seok;Lee, Eun-Khwang;Song, Jung-Hwan;Kim, Jinhyung;Seo, Min-Kyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.76.1-76.1
    • /
    • 2015
  • Optical resonances of metallic or dielectric nanoantennas enable to effectively convert free-propagating electromagnetic waves to localized electromagnetic fields and vice versa. Plasmonic resonances of metal nanoantennas extremely modify the local density of optical states beyond the optical diffraction limit and thus facilitate highly-efficient light-emitting, nonlinear signal conversion, photovoltaics, and optical trapping. The leaky-mode resonances, or termed Mie resonances, allow dielectric nanoantennas to have a compact size even less than the wavelength scale. The dielectric nanoantennas exhibiting low optical losses and supporting both electric and magnetic resonances provide an alternative to their metallic counterparts. To extend the utility of metal and dielectric nanoantennas in further applications, e.g. metasurfaces and metamaterials, it is required to understand and engineer their scattering characteristics. At first, we characterize resonant plasmonic antenna radiations of a single-crystalline Ag nanowire over a wide spectral range from visible to near infrared regions. Dark-field optical microscope and direct far-field scanning measurements successfully identify the FP resonances and mode matching conditions of the antenna radiation, and reveal the mutual relation between the SPP dispersion and the far-field antenna radiation. Secondly, we perform a systematical study on resonant scattering properties of high-refractive-index dielectric nanoantennas. In this research, we examined Si nanoblock and electron-beam induced deposition (EBID) carbonaceous nanorod structures. Scattering spectra of the transverse-electric (TE) and transverse-magnetic (TM) leaky-mode resonances are measured by dark-field microscope spectroscopy. The leaky-mode resonances result a large scattering cross section approaching the theoretical single-channel scattering limit, and their wide tuning ranges enable vivid structural color generation over the full visible spectrum range from blue to green, yellow, and red. In particular, the lowest-order TM01 mode overcomes the diffraction limit. The finite-difference time-domain method and modal dispersion model successfully reproduce the experimental results.

  • PDF

A Study and Design of Beam Scanning Array Antenna using IR-UWB (IR-UWB를 이용한 빔 스캐닝 배열 안테나 설계 및 연구)

  • Kim, Keun-Yong;Kang, Eun-Kyun;Kim, Jin-Woo;Ra, Keuk-Whan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.194-201
    • /
    • 2014
  • This paper is able to be solved by improving degradation in multi-path environment by adjust beam pattern angle through modifying pulse phase of each antennas by using TRM (Transmitter Receiver Module). Beam Scanning Array Antenna, which is transmitter/receiver that improves degradation in multi-path environment without any signal distortion, is designed and manufactured. Beam Scanning Array Antenna should be able to send/receive signal at the antenna's longitudinal part without distortion and should not influences other systems. Also, it should include target detecting ability by beam steering.Dispersion characteristic of Beam Scanning Antenna, which is designed, is analysed by using fidelity, and steering and radar resolution performance is verified by using $1cm{\times}1cm$ sized target. To manufacture Beam Scanning Array Antenna, control board and GUI, which is able to control Vivaldi Antenna for IR-UWB, Tri-Band Wilkinson power divider, and TRM (Transmitter Receiver Module), is designed. Throughout this research, developed Beam Scanning UWB Array Antenna system is adoptable for radar application field. and time domain analysis techniques by using network analyser made the antenna characteristics analysis for setting up antenna more accurate. In addition, it makes beam width checking without difficulties.

Design of UWB Tapered Slot Antenna for the Optimum Impulse Radio Transmitting & Receiving (최적 임펄스 전송을 위한 초광대역 테이퍼 슬롯 안테나 설계)

  • Koh, Young-Mok;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.553-563
    • /
    • 2010
  • This paper presents a tapered slot-antenna(TSA) for optimal impulse-signal transmission in ultra-wide band(UWB). The proposed TSA provides radiates in end-fire direction, which meets an impulse-radio UWB(IR-UWB) system demands(e.g., low loss, thus less error throughout the UWB band). In order to minimize the pulse distortion, we used an wideband impedance transformer and a microstrip slotline. The pulse fidelity characteristics was evaluated with finite-difference time-domain(FDTD) analysis technique and pulse fidelity correlation equation. Approximately 93.89 % pulse fidelity was obtained between the two antennas in 0.5 m range. Additionally, derived chirp Z-transform algorithm enables us to utilize the zoom-in option on the pulse signal in few nano-seconds below. Thus, it is possible to analyze the pulse signal distortion, delay or dispersion characteristics.

A design of a circular phased-array antenna with microstrip slots (마이크로스트립 슬로트의 원형 위상배열 안테나 설계)

  • 임계재;고성선;윤현보
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.1
    • /
    • pp.46-54
    • /
    • 1991
  • A noble phased-array antenna of the circular form with microstrip slots was designed for steering the radiation beam and increasing the directivity and gain. The directivity and gain could be controlled, varying the number of slots and the radius of a circle, but here, the 40 .deg. beam scanning antenna system was achieved by tangentially arranging 4 mi- crostrip slots on a circumference and the analog phase shifter was used to adjust phase difference in the adjacent elements. And such a system has a microstrip configuration taking the effects of the line dispersion and discontinuities into account at 10 Ghz. The experimental results were fairly agreed with theoretical values, and this circular phased array had an improved performance over the rectangular phased array with 64-microstrip patches in a view of the number of array elements.

  • PDF

Symmetrical Scanning Leaky Wave Antenaa Using Double Negative and Double Positive Transmission Line (Double Negative, Positive 전승 선로를 이용한 대칭적적인 주파수 스캐닝 누설파 안테나)

  • 이재곤;이정해
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1069-1074
    • /
    • 2004
  • In this paper, we have designed artificial double negative(DNG) transmission line composed of series inter-digital capacitor and two shunt inductive short stubs. This artificial DNG transmission line has the property of double positive (DPS) transmission line over some frequency ranges due to RF nature. In detail, this transmission line simultaneously has the contrary properties of DNG and DPS transmission line depending on operation frequency. DPS/DNG transmission line at leaky region is utilized to design frequency scanning antenna with backfire-to-endfire. We have simulated and measured the dispersion and for-field radiation beam patterns of symmetrical leaky wave antenna. The results show rough agreement.

Study of Time Domain Measurement and Analysis Technique Using Network Analyzer for UWB Antenna link Characterization (UWB 안테나 링크 특성화를 위한 네트워크 분석기를 이용한 시간영역 측정 및 분석기술 연구)

  • Koh, Young-Mok;Kim, Jung-Min;Kim, Keun-Yong;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.69-80
    • /
    • 2012
  • In this paper, we studied the time-domain measurement and analysis techniques using a network analyzer for characterization UWB antenna link radiating impulse signal. For this purpose, we developed the CZT(Chirp z-Transform) algorithm which has characterized zoom-in function and transformed the acquired data from network analyzer to time domain format. Using the CZT algorithm, we proves that it would be better efficient and more faster than the DFT for analyzing the waveform and also be able to zoom-in the arbitrary region.

Design of Inductive Loaded Microstrip Patch Antennas with Suppressed Radiations along Horizontal Directions (수평방향 방사가 억제된 Inductive loaded 마이크로스트립 패치 안테나의 설계)

  • Yoon, Young-Min;Kwak, Eun-Hyuk;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.56-66
    • /
    • 2012
  • The inductive loaded patch antenna with suppressed radiation along the horizontal plane and enhanced broadside gain is investigated by adjusting the width and the via radius of a unit cell at a fixed length of a unit cell. The effects of the via radius and the width of the unit cell on the dispersion characteristics of the inductive loaded transmission line are investigated. The systematic study to determine the via radius and the width of the unit cell for the effective dielectric constant of the inductive loaded patch antenna close to 1 in order to suppress the radiation along the horizontal plane is presented. Inductive loaded patch antennas composed of five unit cells with resonant frequency of 5 GHz are designed and their radiation characteristics are presented. The horizontal radiation along the E-plane is greatly suppressed to less than -15 dBi when the effective dielectric constant of the inductive loaded patch antenna is slightly less than 1.