• Title/Summary/Keyword: Ansys CFX

Search Result 266, Processing Time 0.023 seconds

A Study on Simulation of Dam-Break Wave Using 3-D Numerical Model (3차원 수치모형을 이용한 댐 붕괴파 모의에 관한 연구)

  • Jeong, Woo-Chang;Lee, Myung-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.133-133
    • /
    • 2011
  • 본 연구에서는 3차원 수치모형을 이용하여 댐붕괴파의 전파특성에 대한 모의를 수행하였다. 적용된 수치모형은 ANSYS CFX(v. 13) 모형으로 진보된 유동해석기법과 편리한 workbench 환경이 결합된 강력한 GUI 환경을 통해 작업하기 편리하며, 빠르고 정확한 해석결과를 제공하는 전산유체역학 도구로 국내외에서 이용되고 있다. 본 연구에서는 기존의 댐 붕괴파 특성 분석과 관련된 수리모형실험(Soares Frazao 등, 2004: Soares Frazao와 Zech, 2008) 자료를 이용하여 모의를 수행하였으며, 지점별 실측자료와 2차원 유한체적모형(정 등, 2009, 2010)에 의한 결과와의 비교를 통해 적용성 검증을 수행하였다. 또한 3차원 모형 적용 시 중요한 매개변수로 고려되는 수로바닥 및 벽면에서의 조도높이 따른 댐 붕괴파의 전파양상을 분석하였다.

  • PDF

A numerical investigation on nonlinear behavior of fluid flow with variation of physical properties of a porous medium (다공성 매질의 물리적 특성 변화에 따른 유체흐름의 비선형 거동에 대한 수치적 분석)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.325-334
    • /
    • 2017
  • In this study, the numerical investigation of the non-linear behavior of the fluid flow with physical properties, such as porosity and intrinsic permeability of a porous medium, and kinematic viscosity of a fluid, are carried out. The applied numerical model is ANSYS CFX which is the three-dimensional fluid dynamics model and this model is verified through the application of existing physical and numerical results. As a result of the verification, the results of the pressure gradient-velocity relationship and the friction coefficient-Reynolds number relationship produced from this study show relatively good agreement with those from existing physical and numerical experiments. As a result of the simulation by changing the porosity and intrinsic permeability of a porous medium and the kinematic viscosity of a fluid, the kinematic viscosity has the biggest effect on the non-linear behavior of the fluid flow in the porous medium.

A Study on Performance Improvement of Light and Low-Noisy Standing Grinder with Vacuum Dust Collection Using a Cyclone Separator (사이클론을 활용한 경량.저소음 진공집진 스탠딩 그라인더의 성능개선에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4732-4737
    • /
    • 2011
  • A standing grinder with a vacuum dust collection, which works grinding a surface and collecting dust occurred simultaneously, is needed to clean the surface before painting, or to remove a weld bead burr in the industrial field. In recent it trends to be compact and potable with high grinding and dust collection power, and low noise. As increasing these grinding and dust collection power, the noise and weight of standing grinder occurs an important problem. To solve these problem, an efficient cyclone separator was designed and developed by Ansys-CFX analysis and experiments. A weight of the developed grinder part was 5.9kg, which can be easily handled on standing by workers. and a noise level of the developed prototype was measured 69.9 dB(A).

An Advanced Method for Behavior-Characteristics Analysis of Diesel Fuel Spray

  • Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • In order to control emissions from engine, it is necessary to understand the mixture formation process of diesel spray. In this study, analysis of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray under a high temperature and pressure was performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the Exciplex Fluorescence Method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT), and then injection pressure was selected as an analysis parameter. Consequently, it was found that the experimental results and the numerical results are consistent with each other, and then in order to investigate the behavior characteristics of evaporative diesel spray, the effectiveness of the use of CFX of commercial code is definitely validated.

Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis (15,000 마력급 원심식 압축기 임펠러 블레이드의 유체-구조 연성해석을 이용한 형상최적설계)

  • Kang, Hyun Su;Oh, Jeongsu;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.547-556
    • /
    • 2014
  • This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints.

Lightweight Design of a Main Starting Air Valve through FSI Analysis (구조연성해석을 통한 메인스타팅 에어밸브의 경량화설계)

  • Lee, Kwon-Hee;Jang, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5371-5376
    • /
    • 2013
  • The role of a main starting air valve is to supply compressed air to the diesel engine for starting the stopped diesel engine of a ship and cut off the air during normal operation. In this study, the main starting air valve with 80mm size was designed based on the developed valve with 50mm size. The concept design of the 80A main starting air valve was completed by using CATIA. Then, fluid analysis was performed to investigate the flow characteristics such as pressure and velocity distribution. Sequentially, structural analysis using FSI was performed. In this study, ANSYS CFX and ANSYS Workbench are utilized. The heavy weight of the body can deteriorate the strength performance of neighbor elements, leading to undesirable effect on flow characteristics. Thus, in this research, a lightweight design of the body was suggested satisfying strength requirement. The weight of the suggested design was reduced by 7kg, and the strength satisfied its requirement.

Shape Optimization of High Power Centrifugal Compressor Using Multi-Objective Optimal Method (다목적 최적화 기법을 이용한 고출력 원심압축기 형상 최적설계)

  • Kang, Hyun Su;Lee, Jeong Min;Kim, Youn Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.435-441
    • /
    • 2015
  • In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.

Comparative Study of Commercial CFD Software Performance for Prediction of Reactor Internal Flow (원자로 내부유동 예측을 위한 상용 전산유체역학 소프트웨어 성능 비교 연구)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1175-1183
    • /
    • 2013
  • Even if some CFD software developers and its users think that a state-of-the-art CFD software can be used to reasonably solve at least single-phase nuclear reactor safety problems, there remain limitations and uncertainties in the calculation result. From a regulatory perspective, the Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of commercial CFD software for nuclear reactor safety problems. In this study, to examine the prediction performance of commercial CFD software with the porous model in the analysis of the scale-down APR (Advanced Power Reactor Plus) internal flow, a simulation was conducted with the on-board numerical models in ANSYS CFX R.14 and FLUENT R.14. It was concluded that depending on the CFD software, the internal flow distribution of the scale-down APR was locally somewhat different. Although there was a limitation in estimating the prediction performance of the commercial CFD software owing to the limited amount of measured data, CFX R.14 showed more reasonable prediction results in comparison with FLUENT R.14. Meanwhile, owing to the difference in discretization methodology, FLUENT R.14 required more computational memory than CFX R.14 for the same grid system. Therefore, the CFD software suitable to the available computational resource should be selected for massively parallel computations.