Recently, large amount of information in IDS(Intrusion Detection System) can be un manageable and also be mixed with false prediction error. In this paper, we propose a data mining methodology for IDS, which contains uncertainty based on training process and post-processing analysis additionally. Our system is trained to classify the existing attack for misuse detection, to detect the new attack pattern for anomaly detection, and to define border patter between attack and normal pattern. In experimental results show that our approach improve the performance against existing attacks and new attacks,from 0.62 to 0.84 about 35%.
Rapid Development and adoption of AIS as a survailance tool has resulted in widespread application of data analysis technology, in addition to AIS ship trajectory clustering. AIS data-based clustering has become an increasingly popular method for marine traffic pattern recognition, ship route prediction and anomaly detection in recent year. In this paper we propose a route waypoint extraction by clustering ships CoG variance trajectory using Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm in both port approach channel and coastal waters. The algorithm discovers route waypoint effectively. The result of the study could be used in traffic route extraction, and more-so develop a maritime anomaly detection tool.
Statistical forecast models for the prediction of the summertime Changma precipitation have been developed in this study. As effective predictors for the Changma precipitation, the springtime sea surface temperature (SST) anomalies over the North Atlantic (NA1), the North Pacific (NPC) and the tropical Pacific Ocean (CNINO) has been suggested in Lee and Seo (2013). To further improve the performance of the statistical prediction scheme, we select other potential predictors and construct 2 additional statistical models. The selected predictors are the Northern Indian Ocean (NIO) and the Bering Sea (BS) SST anomalies, and the spring Eurasian snow cover anomaly (EUSC). Then, using the total three statistical prediction models, a simple ensemble-mean prediction is performed. The resulting correlation skill score reaches as high as ~0.90 for the last 21 years, which is ~16% increase in the skill compared to the prediction model by Lee and Seo (2013). The EUSC and BS predictors are related to a strengthening of the Okhotsk high, leading to an enhancement of the Changma front. The NIO predictor induces the cyclonic anomalies to the southwest of the Korean peninsula and southeasterly flows toward the peninsula, giving rise to an increase in the Changma precipitation.
Li, Tao;Xu, Wenduo;Wang, Li Na;Li, Ningpeng;Ren, Yongjun;Xia, Jinyue
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1690-1707
/
2021
Precipitation prediction during flood season has been a key task of climate prediction for a long time. This type of prediction is linked with the national economy and people's livelihood, and is also one of the difficult problems in climatology. At present, there are some precipitation forecast models for the flood season, but there are also some deviations from these models, which makes it difficult to forecast accurately. In this paper, based on the measured precipitation data from the flood season from 1993 to 2019 and the precipitation return data of CWRF, ANN cycle modeling and a weighted integration method is used to correct the CWRF used in today's operational systems. The MAE and TCC of the precipitation forecast in the flood season are used to check the prediction performance of the proposed algorithm model. The results demonstrate a good correction effect for the proposed algorithm. In particular, the MAE error of the new algorithm is reduced by about 50%, while the time correlation TCC is improved by about 40%. Therefore, both the generalization of the correction results and the prediction performance are improved.
This study explores the 6-month lead prediction skill of stratospheric temperature and circulations in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment over the period of 1996~2009. Both the tropical and extratropical circulations are considered by analyzing the Quasi-Biennial Oscillation (QBO) and Northern Hemisphere Polar Vortex (NHPV). Their prediction skills are quantitatively evaluated by computing the Anomaly Correlation Coefficient (ACC) and Mean Squared Skill Score (MSSS), and compared with those of El Nino-Southern Oscillation (ENSO) and Arctic Oscillation (AO). Stratospheric temperature is generally better predicted than tropospheric temperature. Such improved prediction skill, however, rapidly disappears in a month, and a reliable prediction skill is observed only in the tropics, indicating a higher prediction skill in the tropics than in the extratropics. Consistent with this finding, QBO is well predicted more than 6 months in advance. Its prediction skill is significant in all seasons although a relatively low prediction skill appears in the spring when QBO phase transition often takes place. This seasonality is qualitatively similar to the spring barrier of ENSO prediction skill. In contrast, NHPV exhibits no prediction skill beyond one month as in AO prediction skill. In terms of MSSS, both QBO and NHPV are better predicted than their counterparts in the troposphere, i.e., ENSO and AO, indicating that the GloSea5 has a higher prediction skill in the stratosphere than in the troposphere.
TBM (tunnel boring machine) 터널 프로젝트의 리스크 관리 측면에서 굴진율 예측은 중요하며, 이를 위한 머신러닝 기반 TBM 굴진율 예측 연구가 지속적으로 진행되어 왔다. 그러나, 기존 연구의 머신러닝 예측 모델은 정상 굴진율과 이상 굴진율 간의 불균형 데이터를 고려하는 데 한계가 있다. 본 연구에서는 데이터 증강 기법을 통해 불균형 데이터를 처리하여 머신러닝 기반 TBM 굴진율 이상탐지 성능을 개선하였다. 먼저, 상관관계 분석을 통해 유사 변수를 제거하여 6가지 입력특성을 선정하였다. 또한, 하위 10%와 상위 10%의 굴진율을 각각 이상 등급으로, 그 외 범위의 굴진율을 정상 등급으로 굴진율 등급을 구분하였다. 기존 학습 데이터와 SMOTE (synthetic minority oversampling technique)를 통해 증강된 학습 데이터를 각각 XGB (extreme gradient boosting)에 적용한 XGB 모델과 XGB-SMOTE 모델을 구축하였다. 굴진율 등급 예측 성능을 비교한 결과, XGB 모델은 정상 굴진율에 대한 예측 성능은 우수하나 이상 굴진율 예측 성능은 상대적으로 낮게 도출되었다. 반면, XGB-SMOTE 모델은 모든 굴진율 등급에서 일관되게 우수한 예측 성능을 보였다. 이는 SMOTE를 통한 이상 굴진율 데이터의 증강이 이상 굴진율을 유발하는 지반조건과 TBM 운영인자 간의 패턴 학습 수준을 향상시켰기 때문으로 판단된다. 결론적으로, 본 연구는 머신러닝 기반 TBM 굴진율 이상탐지 시 데이터 증강 기법을 활용한 불균형 데이터 처리가 효과적임을 보여준다.
This study explores the Subseasonal-to-Seasonal (S2S) prediction skills of the Northern Hemisphere mid-latitude geopotential height in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment. The prediction skills are quantitatively verified for the period of 1991~2010 by computing the Anomaly Correlation Coefficient (ACC) and Mean Square Skill Score (MSSS). GloSea5 model shows a higher prediction skill in winter than in summer at most levels regardless of verification methods. Quantitatively, the prediction limit diagnosed with ACC skill of 500 hPa geopotential height, averaged over $30^{\circ}N{\sim}90^{\circ}N$, is 11.0 days in winter, but only 9.1 days in summer. These prediction limits are primarily set by the planetary-scale eddy phase errors. The stratospheric prediction skills are typically higher than the tropospheric skills except in the summer upper-stratosphere where prediction skills are substantially lower than upper-troposphere. The lack of the summer upper-stratospheric prediction skill is caused by zonal mean error, perhaps strongly related to model mean bias in the stratosphere.
군사 비밀이나 조직의 기밀 데이터는 그 조직의 매우 중요한 자원이며 외부로부터의 접근이 차단되어야 한다. 그러나 최근 인터넷의 접근성이 높아짐으로써 보안이 중요한 이슈로 부상하고 있다. 이를 위해 네트워크 내부에 대한 공격이나 침입행위를 탐지하는 이상 행위 탐지 방법이 제안되었다. 그러나 대부분의 이상 행위 탐지는 외부로부터의 침입에 대한 측면만 다루고 있으며, 공격이나 침입보다 더 큰 피해를 입히는 내부 데이터의 유출에 대해서는 다루고 있지 않다. 또한 기존의 이상 행위 탐지 방법을 데이터 유출 탐지에 적용할 경우 네트워크 내부의 환경과 여러 가지 변수들이 고려되어 있지 않기 때문에 많은 문제점들이 발생한다. 따라서 본 논문에서는 데이터 유출 탐지를 위한 이상 행위 탐지(Data Exfiltrating Detection for Anomaly Detection : DEDfAD) 방법의 정확도 향상을 위하여 DEDfAD에서 고려되어야 하는 이슈 사항들에 대하여 기술하고, 프로파일 기반의 탐지 방법과 머신러닝 기반의 탐지 방법으로 분류하여 이들의 장단점을 분석한다. 또한 분류된 접근 방법을 중심으로 이슈들과의 비교분석을 통해 향후 연구 방향을 제시한다.
Journal of Korea Artificial Intelligence Association
/
제1권1호
/
pp.11-16
/
2023
Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.
Atmospheric rivers (ARs) are closely related to local precipitation which can be both beneficial and destructive. Although several studies have evaluated their predictability, there is a lack of studies on East Asian ARs. This study evaluates the prediction skill of East Asian ARs in the Korean Integrated Model (KIM) for 2020~2022 summer. The spatial distribution of AR frequency in KIM is qualitatively similar to the observation but overestimated. In particular, the model errors greatly increase along the boundary of the western North Pacific subtropical high as the forecast lead time increases. When the prediction skills are quantitatively verified by computing the Anomaly Correlation Coefficient and Mean Square Skill Score, the useful prediction skill of daily AR around the Korean Peninsula is found up to 5 days. Such prediction limit is primarily set by the wind field errors with a minor contribution of moisture distribution errors. This result suggests that the improved prediction of atmospheric circulation field can improve the prediction of East Asian summer ARs and the associated precipitation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.