• Title/Summary/Keyword: Anodizing time

Search Result 81, Processing Time 0.023 seconds

양극산화를 이용한 Titania Nanotube(TNT) 박막 제조 (Preparation of Titania Nanotube Thin films by Anodizing)

  • 이영록;정지훈
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.28-34
    • /
    • 2011
  • 티타니아 나노튜브(Titania nanotube, TNT)는 티타늄을 $F^-$ 이온을 함유한 전해질 하에서 전기로 양극산화 시켜 제조 한 튜브형태의 박막으로 광학 활성을 가진다. 전해질은 증류수와 포름아마이드를 용매로 사용하였으며 HF, NaF, $NH_4F$$F^-$이온 성분으로 사용하였다. 전압과 양극산화 시간이 증가함에 따라 TNT의 길이와 직경도 증가하였다. 양극산화에 의해 제조된 TNT는 매우 규칙적인 튜브형태였으며, 제조 조건에 따라 길이는 최대 13.7 ${\mu}m$이었다. 생성된 티타니아는 비정질이었으며 열처리에 의해 아나타제 결정으로 바뀌었다.

양극산화를 이용한 산화니켈 박막 제조 (Preparation of Nickel Oxide Films by Anodizing)

  • 김영진;정지훈
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.204-210
    • /
    • 2012
  • 니켈에 양극산화법을 적용하여 기존의 선행연구에서 보고되었던 nm 단위의 두께를 극복하고 최대 2.3 ${\mu}m$ 두께의 산화니켈 박막을 제조하였다. 전해질은 에틸렌글리콜을 용매로 사용하였으며 $F^-$ 이온을 공급하기 위해 $NH_4F$를 첨가하였다. 전압을 40, 60, 80 V로 변화시키며 최대 12시간까지 양극산화반응을 진행하였으며 시간과 전압을 증가시킴에 따라 산화니켈 박막의 두께도 증가하였다. 그러나 80 V 전압에서는 급격한 산화 작용에 따른 니켈의 파괴가 나타났다. XRD 분석 결과 양극산화에 의해 NiO가 생성되었음을 확인하였다.

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • 이승준;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

양극산화공정을 이용한 반사방지 성형용 나노 마스터 개발 (Fabrication of Nano Master with Anti-reflective Surface Using Aluminum Anodizing Process)

  • 신홍규;박용민;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.697-701
    • /
    • 2009
  • A simple method for the fabrication of porous nano-master for the anti-reflection effect on the transparent substrates is presented. In the conventional fabrication methods for antireflective surface, coating method using materials with low refractive index has usually been used. However, it is required to have a high cost and long processing time for mass production. In this paper, we developed a porous nano-master with anti-reflective surface for the molding stamper of the injection mold, hot embossing and UV imprinting by using the aluminum anodizing process. Through two-step anodizing and etching processes, a porous nano-master with anti-reflective surface was fabricated at the large area. Pattern size Pore diameter and inter-pore distance are about 130nm and 200nm, respectively. In order to replicate anti-reflective structure, hot embossing process was performed by varying the processing parameters such as temperature, pressure and embossing time etc. Finally, antireflective surface can be successfully obtained after etching process to remove selectively silicon layer of AAO master.

  • PDF

바이오 센서로의 응용을 위한 2차 양극산화 시간에 따른 나노튜브의 구조적, 전기적 특성 (Structural and Electrical Properties of Nanotube as Various Second Anodizing Time for Biosensor)

  • 김용준;이태호;정혜린;이성갑
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.741-744
    • /
    • 2013
  • In this study, we fabricated anodic aluminum oxide (AAO) membrane by two step anodizing process for pH detection. The structural properties were observed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). Electrochemical measurements of the pH sensor have been performed in capacitance-voltage (C-V) and drift rates. The characterization of AAO membrane exhibited high sensitivity (99.1 mV/pH) at second anodizing time of 4 min.

Electrical properties of the Porous polycrystalline silicon Nano-Structure as a cold cathode field emitter

  • Lee, Joo-Won;Kim, Hoon;Lee, Yun-Hi;Jang, Jin;Oh, Myung-Hwan;Ju, Byung-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.1035-1038
    • /
    • 2002
  • The electrical properties of Porous polycrystalline silicon Nano-Structure (PNS) as a cold cathode were investigated as a function of anodizing condition, the thickness of Au film as a top electrode and the substrate temperature. Non-doped 2${\mu}m$-polycrystalline silicon was electrochemically anodized in HF: ethanol (=1:1) mixture as a function of the anodizing condition including a current density and anodizing time. After anodizing, the PNS was thermally oxidized for 1 hr at 900 $^{\circ}C$. Then, 20nm, 30nm, 45nm thickness of Au films as a top electrode were deposited by E-beam evaporator. Among the PNSs fabricated under the various kinds of anodizing conditions, the PNS anodized at a current density of 10mA/$cm^2$ for 20 sec has the lowest turn-on voltage and the highest emission current than those of others. Also, the electron emission properties were investigated as functions of measuring temperature and the different thickness of Au film as a top-electrode.

  • PDF

NaF 전해용액을 이용한 양극산화에 의한 타이타늄 표면의 나노튜브구조의 형성에 관한 연구 (Investigation on Formation of Nanotube Titanium Oxide Film by Anodizing on Titanium in NaF Electrolytes)

  • 임현필;박남순;박상원
    • 구강회복응용과학지
    • /
    • 제25권2호
    • /
    • pp.183-190
    • /
    • 2009
  • 본 연구의 목적은 NaF와 $H_3PO_4$를 사용하여 양극산화과정을 통해 나노튜브 제작 조건을 찾는 것이다. 절삭된 직경 15 mm, 두께 1.5 mm의 티타늄 디스크를 양극에, 백금을 음극에 연결하고 전극간의 거리는 10 mm가 되도록 하였다. $H_3PO_4$와 NaF 용액을 전해질로 하여 양극산화를 시행하였는데 전압, 전해질 농도, 산화시간을 달리하여 티타늄 디스크에 나노튜브를 형성하였다. 양극산화 후 24시간 동안 증류수로 세척한 후 24시간 동안 $40^{\circ}C$ 오븐에서 건조하고 시편의 표면구조 형상을 관찰 분석하였다. 실험 결과 0.5 wt % NaF에서 전압과 시간이 증가함에 따라 pore 형태의 초기 나노튜브 형성되었다. 1.0 wt % NaF에서 20 V, 20 분과 25 분에서 나노튜브가 생성되었고, 30 V에서 튜브의 형태가 커지면서 터지는 양상을 보였다. 2.0 wt % NaF에서 전압과 시간에 상관없이 적절한 나노튜브형태가 형성되지 않았다. $1M\;H_3PO_4$, 1.0 wt % NaF 전해용액, 20 V, 20분 양극산화 조건에서 티타늄 디스크 상에 가장 잘 정렬된 형태의 나노튜브 구조가 형성되었다. 양호한 형태의 나노튜브 형성을 위해서는 전해질의 종류에 따라 적절한 농도, 전압, 시간의 형성조건이 필요할 것으로 사료된다.

알루미늄 6061 합금의 양극 산화 인가 전압과 시간에 따른 표면의 산화피막층 형성 거동 (The Formation of Anodic Oxide Film by Anodizing Voltage and Time of 6061 Aluminum Alloy)

  • 박영주;정찬영
    • 한국전기전자재료학회논문지
    • /
    • 제34권1호
    • /
    • pp.68-72
    • /
    • 2021
  • Aluminum is a lightweight metal and has excellent properties with regard to conductivity, workability, and strength. It has been used in various industries owing to its economic benefits. To improve upon the mechanical properties and processability by adding various alloying elements to aluminum, improving the corrosion resistance and heat resistance by electrochemically forming a porous anodic film having a thickness and hardness on the surface of the aluminum alloy is crucial. In this study, the aluminum 6061 alloy was controlled by an anodization process in a 0.3M oxalic acid electrolyte at room temperature to investigate the oxide film parameters such as porosity and thickness depending on the modulating applied voltage and time. The anodizing experiment was performed by increasing the time from 1 h to 9 h at 2-h intervals at applied voltages of 50 V and 60 V.

알루미늄의 아노다이징과 나노 다이아몬드 분말 봉공처리에 의한 내식성과 내마모성 향상에 관한 연구 (Study on Improvement of Corrosion Resistance and Wear Resistance by Anodizing and Sealing Treatment with Nano-diamond Powder on aluminum)

  • 강수영;이대원
    • 한국표면공학회지
    • /
    • 제47권3호
    • /
    • pp.121-127
    • /
    • 2014
  • In this study, in order to improve corrosion resistance and wear resistance of aluminum, surface treatment was made by anodizing with oxalic acid solution and sealing with nano-diamond powder. Average size of nano-diamond powder was 30nm. Anodizing with oxalic acid made many pores in the aluminum oxide layer. Pore size and oxide thickness were investigated by scanning electron microscope (SEM). Pore size increased as temperature increased and voltage increased. It was possible to make oxide layer with pore diameter more than 50 nm. Oxide thickness increased as temperature and voltage and treatment time increased. Oxide layer with above $10{\mu}m$ thickness was made. Aluminum oxide layer with many pores was sealed by water with nano-diamond powder. Surface morphology was investigated by SEM. After sealing treatment with nano-diamond powder, corrosion resistance, wear resistance and hardness increased.

양극 산화 조건 변화에 따른 AAO Template Morphology 제어 (AAO Template Morphology Controlled by Variation of Anodizing Condition)

  • 조예원;이성갑;김경민
    • 한국전기전자재료학회논문지
    • /
    • 제28권4호
    • /
    • pp.249-251
    • /
    • 2015
  • In this study, the application of biosensor having a large surface area for more effective and AAO (anomic aluminium oxide) template in order to gain concentration and voltage of anodizing process morphology changes to the control of experiments were conducted. The biosensor surface may increase the response characteristics by having a large surface area. So the entrance to a little more efficient wide depth sensing experiment was carried out to obtain a structure body with a branch shape with a large surface area with increasing. Experimental results from the FE-SEM observation was obtained template morphology. As a result, depending on the anodizing time, the depth of the layer of aluminum oxide was found that it was confirmed that the deepening of the pore size changes according to anodizing condition. And measuring the detection performance according to the conditions in the electrolyte and the reaction because of blood using a biosensor measuring sensing property according to the depth of the pore depth is considered that does not have a significant impact.