• 제목/요약/키워드: Anodized surface

검색결과 232건 처리시간 0.026초

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • 이수원;정태곤;양재웅;정재영;박광민;정용훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

Modified simulated body fluid에 침전한 티타늄 표면에서 침전 기간에 따라 나타나는 파골 세포의 분화억제 양상 (Inhibition of Osteoclast differentiation based on precipitation time of titanium surfaces immersed in modified simulated body fluid)

  • 장현민;허성주;김성균;곽재영
    • 대한치과보철학회지
    • /
    • 제57권2호
    • /
    • pp.142-149
    • /
    • 2019
  • 목적: 본 연구의 목적은 티타늄 디스크를 Modified simulated body fluid (mSBF)에 침전시켰을 때, 침전 시킨 기간에 따른 파골 세포 분화 억제 변화 양상을 알아보는 것이다. 재료 및 방법: Machined surface와 anodized surface를 가진 티타늄 합금(Ti grade III)디스크를 각각 증류수와 mSBF에 침전 시켰다. 침전 기간은 7일, 14일, 21일, 28일 진행하였으며, 각각의 기간 동안 대조군은 증류수에 침전하였다. 파골 세포로 분화 가능한 RAW 264.7 세포를 점주하여 침전 기간에 따른 부착된 세포 수 측정, TRAP 활성 측정, western blot을 통한 NFATc1의 발현양상을 측정하였다. 결과: Machined surface와 anodized surface 모두에서 mSBF에14일 이상 침전하였을 때, 파골 세포의 분화를 억제하는 능력이 통계적으로 유의하게 나타났다. 침전 기간과 세포의 부착은 상관관계가 없었다. 14일 이상 침전시켰을 때, TRAP 활성은 감소되었으며, NFATc1의 발현은 억제되었다. 14일 이상 침전 시켰을 때, TRAP활성 감소 및 NFATc1 발현 억제 양상은 변함이 없었다. 결론: 티타늄 합금 디스크를 14일 이상 mSBF에 침전시키면 RAW 264.7 세포가 파골 세포로 분화하는 것을 막을 수 있다. 침전기간이 증가해도 분화 억제 양상은 변화하지 않는다.

SURFACE CHARACTERISTICS OF ANODIC OXIDIZED TITANIUM ACCORDING TO THE PORE SIZE

  • Ha Heon-Seok;Kim Chang-Whe;Lim Young-Jun;Kim Myung-Joo
    • 대한치과보철학회지
    • /
    • 제44권3호
    • /
    • pp.343-355
    • /
    • 2006
  • Statement of problem. The success of osseointegration can be enhanced with an implant that has improved surface characteristics. Anodic oxidation is one of the surface modifying method to achieve osseointegration. Voltage of anodic oxidation can change surface characteristics and cell activity Purpose. This study was performed to evaluate MG63 cell responses such as affinity, proliferation and to compare surface characteristics of anodic oxidized titanium in various voltage. Material and method. The disks for cell culture were fabricated from grade 3 commercially pure titanium,1 m in thickness and 12 mm in diameter. Surfaces of 4 different roughness were prepared. Group 1 had a machined surface, used as control. Group 2 was anodized under 220 V, group 3 was anodized under 300 V and group 4 was anodized under 320 V. The microtopography of specimens was observed by scanning electron microscope (JSM-840A, JEOL, Japan) and atomic force microscope(Autoprobe CP, Park Scientific Instrument, USA). The surface roughness was measured by confocal laser scanning microscope(Pascal, LSM5, Zeiss, Germany). The crystal structure of the titanium surface was analyzed with x-ray diffractometer(D8 advanced, Broker, Germany). MG63 osteoblast-like cells were cultured on these specimens. The cell morpholgy was observed by field emission electron microscope(Hitachi S-4700, Japan). The cell metabolic and proliferative activity was evaluated by MTT assay Results and conclusion. With in limitations of this in vitro study, the following conclusions were drawn. 1. In anodizing titanium surface, we could see pores which did not show in control group. In higher anodizing voltage, pore size was increased. 2. In anodizing titanium surface, we could see anatase. In higher anodizing voltage, thicker oxide layer increased crystallinity(anatase, anatase and rutile mixed). 3. MG63 cells showed more irregular, polarized and polygonal shape and developed more lamellipodi in anodizing group as voltage increased. 4. The activity of cells in MTT assay increased significantly in group 3 and 4 in comparison with group 1 and 2. However, there was no difference between group 3 and 4 at P<0.05. Proliferation of MG63 cells increased significantly in pore size($3-5.5{\mu}m$) of group 3 and 4 in comparison with in pore size($0.2-1{\mu}m$ ) of group 2.

Histologic evaluation and removal torque analysis of nano- and microtreated titanium implants in the dogs

  • Ahn, Seok;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.75-84
    • /
    • 2009
  • STATEMENT OF PROBLEM. A number of studies about the nano-treated surfaces of implants have been conducting along with micro-treated surfaces of implants. PURPOSE. The purpose of this study was to get information for the clinical use of nano-treated surfaces compared with micro-treated surfaces by measuring removal torque and analyzing histological characteristics after the placement of various surface-treated implants on femurs of dogs. MATERIAL AND METHODS. Machined surface implants were used as a control group. 4 nano-treated surface implants and 3 micro-treated surface implants [resorbable blast media surface (RBM), sandblast and acid-etched surface (SAE), anodized RBM surface] were used as experimental groups. Removal torque values of implants were measured respectively and the histological analyses were conducted on both 4weeks and 8weeks after implant surgery. The surfaces of removed implants after measuring removal torque values were observed by scanning electron microscopy (SEM) at 8 weeks. RESULTS. 1. Removal torque values of the nano-treated groups were lower than those of micro-treated groups. 2. Removal torque values were similar in the anodized RBM surface groups. 3. On the histological views, there was much of bone formation at 8 weeks, but there was no difference between 4 and 8 weeks, and between the types of implant surfaces as well. CONCLUSION. it is suggested that implant topography is more effective in removal torque test than surface chemistry. To get better clinical result, further studies should be fulfilled on the combined effect of surface topography and chemistry for the implant surface treatments.

항공기 유압유 저장조 내면연마를 위한 슈퍼피니싱 장치 개발에 관한 연구 (Development of Superfinishing Machine to Polish the Inner Surfaces of Aircraft Hydraulic Oil Reservoirs)

  • 최수현;공광주;조영태
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.110-116
    • /
    • 2020
  • Aircraft hydraulic oil reservoirs made with aluminum 7075 have an anodized coating to enable airtightness and corrosion resistance. To maintain a stable oil pressure, the internal surface roughness of the reservoir should be less than approximately 0.2 ㎛. To this end, precision polishing must be performed. However, ensuring the processing quality is challenging, as most polishing operations are performed manually, owing to which, the inner surface roughness is not uniform, and the product quality is irregular. Therefore, we developed a special superfinishing machine to realize the efficient inner polishing of an aircraft hydraulic oil reservoir, by using an abrasive film to improve the process throughput and uniformity. In the experiment involving the superfinishing of an anodized aluminum 7075 cylinder specimen by using the proposed machine, a higher surface roughness than that achieved in the repetitive manual polishing process could be realized.

Anodization of Aluminium Samples in Boric Acid Solutions by Optical Interferometry Techniques

  • Habib, K.
    • Corrosion Science and Technology
    • /
    • 제4권6호
    • /
    • pp.217-221
    • /
    • 2005
  • In the present investigation, holographic interferometry was utilized for the first time to monitor in situ the thickness of the oxide film of aluminium samples during anodization processes in boric acid solutions. The anodization process (oxidation) of the aluminium samples was carried out by the technique of the electrochemical impedance spectroscopy(EIS), in different concentrations of boric acid (0.5-5.0% $H_3BO_3$) at room temperature. In the mean time, the real-time holographic interferometry was used to measure the thickness of anodized (oxide) film of the aluminium samples in solutions. Consequently, holographic interferometry is found very useful for surface finish industries especially for monitoring the early stage of anodization processes of metals, in which the thickness of the anodized film of the aluminium samples can be determined without any physical contact. In addition, measurements of electrochemical values such as the alternating current (A.C) impedance(Z), the double layer capacitance($C_{dl}$), and the polarization resistance(Rp) of anodized films of aluminium samples in boric acid solutions were made by the electrochemical impedance spectroscopy(EIS). Attempts to measure electrochemical values of Z, Cdl, and Rp were not possible by holographic interferometry in boric acid especially in low concentrations of the acid. This is because of the high rate of evolutions of interferometric fringes during the anodization process of the aluminium samples in boric acid, which made measurements of Z, Cdl, and Rp are difficult.

양극산화된 5083-H321 합금의 천연해수 내 전기화학적 부식 및 응력부식균열 특성에 관한 연구 (Investigation on Electrochemical Corrosion and Stress Corrosion Cracking Characteristics of Anodized 5083-H321 Alloy in Natural Seawater)

  • 황현규;신동호;정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제19권5호
    • /
    • pp.259-264
    • /
    • 2020
  • Many studies have been conducted to improve the corrosion resistance and durability of various aluminum alloys through the anodizing technique. It is already used as a unique technique for enhancing the properties of aluminum alloys in various industries. This paper investigated the electrochemical corrosion and stress corrosion cracking characteristics of anodized aluminum 5083-H321 alloy in natural seawater. The corrosion characteristics were assessed by the electrochemical technique and potentiodynamic polarization test. The stress corrosion cracking characteristic was evaluated with a slow strain rate tensile test under 0.005 mm/min rate, which showed that the hard anodizing film had a thickness of about 16.8 ㎛. Although no significant characteristics of stress corrosion cracking were observed in the slow strain rate test, the anodized specimen presented excellent corrosion resistance. The corrosion current density was measured to be approximately 4.2 times lower than that of the base material, and no surface damage was observed in the anodic polarization test.