DOI QR코드

DOI QR Code

Investigation on Electrochemical Corrosion and Stress Corrosion Cracking Characteristics of Anodized 5083-H321 Alloy in Natural Seawater

양극산화된 5083-H321 합금의 천연해수 내 전기화학적 부식 및 응력부식균열 특성에 관한 연구

  • Hwang, Hyun-kyu (Graduate school, Mokpo national maritime university) ;
  • Shin, Dong-Ho (Graduate school, Mokpo national maritime university) ;
  • Jung, Kwang-Hu (Maritime safety training team, Korea institute of maritime and fisheries technology) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 황현규 (목포해양대학교 대학원) ;
  • 신동호 (목포해양대학교 대학원) ;
  • 정광후 (해사안전교육팀, 한국해양수산연수원) ;
  • 김성종 (기관시스템공학부, 목포해양대학교)
  • Received : 2020.09.23
  • Accepted : 2020.10.14
  • Published : 2020.10.30

Abstract

Many studies have been conducted to improve the corrosion resistance and durability of various aluminum alloys through the anodizing technique. It is already used as a unique technique for enhancing the properties of aluminum alloys in various industries. This paper investigated the electrochemical corrosion and stress corrosion cracking characteristics of anodized aluminum 5083-H321 alloy in natural seawater. The corrosion characteristics were assessed by the electrochemical technique and potentiodynamic polarization test. The stress corrosion cracking characteristic was evaluated with a slow strain rate tensile test under 0.005 mm/min rate, which showed that the hard anodizing film had a thickness of about 16.8 ㎛. Although no significant characteristics of stress corrosion cracking were observed in the slow strain rate test, the anodized specimen presented excellent corrosion resistance. The corrosion current density was measured to be approximately 4.2 times lower than that of the base material, and no surface damage was observed in the anodic polarization test.

Keywords

References

  1. S. M Moon, J. Korean Inst. Surf. Eng., 51, 1 (2018). https://doi.org/10.5695/JKISE.2018.51.1.1
  2. I. C. Park, J. H. Lee, M. S. Han, and S. J. Kim. J. Korean Inst. Surf. Eng., 51(2), 87-94 (2018). https://doi.org/10.5695/JKISE.2018.51.2.87
  3. I. C. Park and S. J. Kim, J. Korean Inst. Surf. Eng., 49, 349 (2016). http://dx.doi.org/10.5695/JKISE.2016.49.4.349
  4. S. A. Abdel-Gawad, W. M. Osman, and A. M. Fekry, Surfaces and Interfaces, 14, 314 (2019). https://doi.org/10.1016/j.surfin.2018.08.001
  5. J. R. Pickens, J. R. Gordon, and J. A. S. Green, Metall. Trans. A, 14, 925 (1983). https://doi.org/10.1007/BF02644298
  6. S. Suzer, F. Kadirgan, H. M. Sohmen, A. J. Wetherilt, and I. E. Ture, Sol. Energy Mater. Sol. Cells, 52, 55 (1998). https://doi.org/10.1016/S0927-0248(97)00270-5
  7. S. A. Abdel-Gawad, W. M. Osman, and A. M. Fekry, Surf. Interfaces, 14, 314 (2019). https://doi.org/10.1016/j.surfin.2018.08.001
  8. D. A. Jones, Principles and prevention of corrosion, Macmillan (1992).
  9. R. T. Foley, Corrosion, 42, 277 (1986). https://doi.org/10.5006/1.3584905
  10. H. Ezuber, A. El-Houd, and F. El-Shawesh, Mater Des., 29, 801 (2008). https://doi.org/10.1016/j.matdes.2007.01.021
  11. M. S. Han, S. Ko, S. H. Kim, S. K. Jang, and S. J. Kim, Met Mater Int., 14, 203 (2008). https://doi.org/10.3365/met.mat.2008.04.203
  12. M. Yasuda, F. Weinberg, and D. Tromans. J Electrochem Soc., 137, 3708 (1990). https://iopscience.iop.org/article/10.1149/1.2086291#
  13. S. Y. Yu, P. M. Natishan, and W. E. O'grady, J. Electrochem. Soc., 158-166 (2000).
  14. V. S Sinyavskii, Prot Met., 37, 469 (2001). https://doi.org/10.1023/A:1012374432246
  15. X. Zheng, H. Castaneda, H. Gao, and A. Srivastava, Corros. Sci., 153, 53 (2019). https://doi.org/10.1016/j.corsci.2019.03.018

Cited by

  1. 경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구 vol.19, pp.6, 2020, https://doi.org/10.14773/cst.2020.19.6.310