• Title/Summary/Keyword: Anode efficiency

Search Result 455, Processing Time 0.03 seconds

A Study on the Influence of Al Alloy Sacrificial Anode Efficiency due to Marine Environmental Variation (해양환경 변화가 알루미늄합금 희생양극의 효율에 미치는 영향에 관한 연구)

  • 김도형
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.106-111
    • /
    • 2000
  • Recently it was reported that the life of Al Sacrifical anode is being used in port piers has been significantly shortened compared with the original design life (e.g. average life shortened from 20 years to 13-15 year) Those factors involving these problems mentioned above were seemed to be a quality of anode material and diverse environmental factors such as pH flow rate temperature Dissolved oxygen Chemical oxygen demand and resistivity etcm In this study flow rate and contamination degree(pH) of sea water affecting to sacrificial anode life hve been investigated in terms of electrochemical characteristics of Al alloy sacrificial anode It was known that the lifetime of Al alloy anode was shortened not only by increasing of self-corrosion quantity by varying flow rate of sea water but also by increasing corrosion current density due to the potential difference increment between Al anode and steel structure cathode by varying contamination degree of sea water. Especially when anode current density is from 1mA/cm2 to 3mA/cm2 and flow rate of sea water is under 2m/s anode current efficiency is 90% above However flow rate is over 2m/s anode current efficiency fell down sharply due to erosion corrosion as well as galvanic corrosion.

  • PDF

Study on the High Efficiency of Anode Phosphor Electrode for Filed Emission Lamp (I) Metal Layer (전계방출광원용 고효율 에노드 형광막 특성 연구(I) - 금속막)

  • Lee, Sun-Hee;Kim, Kwang-Bok;Kim, Yong-Won;You, Yong-Chan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.7-10
    • /
    • 2007
  • The electron charging and degradation of anode phosphor layers are showed major problems in high electric field with anode electrode of field emission devices. An Al metal layer on the phosphor layer may get rid of these problems. This Al metal layer are formed with the roughness of phosphor surface layer without interlayer and cannot be given rise to enhance the luminance efficiency. In order to enhance the brightness, an anode layer need to be flated between phosphor layer and Al metal layer in anode electrode. After optimizing the anode phosphor layer, an anode layer with Al metal and inter layer increased the brightness and luminescence efficiency 1.5 times more than only phosphor layer in anode.

  • PDF

Reporting on the High Efficiency of Anode Phosphor Electrode for Filed Emission Lamp - Metal Layer (전계방출광원용 아노드 난반사 연구)

  • Yun, Han-Na;Kim, Yun-Il;Kim, Dae-Jun;Kim, Kwang-Bok
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.29-32
    • /
    • 2008
  • The electron charging and degradation of anode phosphor layers are showed major problems in high electric field with anode electrode of field emission devices. An AI metal layer on the phosphor layer may get rid of these problems. This Hetero-metal-oxide phosphor layer are formed with the roughness of phosphor surface layer without interlayer and cannot be given rise to enhance the luminance efficiency. In order to enhance the brightness, an anode layer need to be flated between phosphor layer and AI metal layer in anode electrode. After optimizing the anode phosphor layer, an anode layer with AI metal and inter layer increased the brightness and luminescence efficiency 1.2 times more than only phosphor laver in anode.

  • PDF

Improvement of the luminous efficiency of organic light emitting diode using LiF anode buffer layer

  • Park, Won-Hyeok;Kim, Gang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.147-147
    • /
    • 2015
  • The multilayer structure of the organic light emitting diode has merits of improving interfacial characteristics and helping carriers inject into emission layer and transport easier. There are many reports to control hole injection from anode electrode by using transition metal oxide as an anode buffer layer, such as V2O5, MoO3, NiO, and Fe3O4. In this study, we apply thin films of LiF which is usually inserted as a thin buffer layer between electron transport layer(ETL) and cathode, as an anode buffer layer to reduce the hole injection barrier height from ITO. The thickness of LiF as an anode buffer layer is tested from 0 nm to 1.0 nm. As shown in the figure 1 and 2, the luminous efficiency versus current density is improved by LiF anode buffer layer, and the threshold voltage is reduced when LiF buffer layer is increased up to 0.6 nm then the device does not work when LiF thickness is close to 1.0 nm As a result, we can confirm that the thin layer of LiF, about 0.6 nm, as an anode buffer reduces the hole injection barrier height from ITO, and this results the improved luminous efficiency. This study shows that LiF can be used as an anode buffer layer for improved hole injection as well as cathode buffer layer.

  • PDF

Characteristics of phosphorescent OLEDs and flexible OLED fabricated indium-zinc-tin-oxide anode (IZTO 애노드를 이용하여 제작한 인광 OLED 및 플랙시블 OLED 특성)

  • Choi, Kwang-Hyuk;Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Jin-A;Kim, Han-Ki;Kang, Jae-Wook;Kim, Jang-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.399-400
    • /
    • 2007
  • In this work, we have investigated the characteristics of the phosphorescent OLED and flexible OLED fabricated on IZTO/glass and IZTO/PET anode film grown by magnetron sputtering, respectively. Electrical and optical characteristics of amorphous IZTO/glass anode exhibited similar to commercial ITO anode even though it was deposited at room temperature. In addition, the amorphous IZTO anode showed higher work function than that of the commercial ITO anode after ozone treatment for 10 minutes. Furthermore, a phosphorescent OLED fabricated on amorphous IZTO anode film showed improved current-voltage-luminance characteristics, external quantum efficiency and power efficiency in contrast with phosphorescent OLED fabricated on commercial ITO anode film. This indicates that IZTO anode is promising alternative anode materials for anode in OLEDs and flexible OLEDs.

  • PDF

Influence of Temperature on the Electrolytic Oxidation of Sulphate Solutions by Electro-deposited Lead Peroxide Anode (전착과산화납양극에 의한 황산염. 전해산화시의 전해온도의 영향)

  • Chong Woo Nam;Hak Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.223-228
    • /
    • 1971
  • In the electrolytic preparation of persulphate from sulphate solution, the current efficiency decrease with temperature increase at the platinum anode. But in case of electrodeposited lead peroxide anode, the current efficiency increase with temperature of the solution. The reason seems to be that the ozone formation is faster in platinum anode than in lead peroxide as temperature increase.

  • PDF

Characteristics of Fluorescent Organic Light Emitting Diodes using Amorphous IZO Anode Film (비정질 IZO 애노드를 이용한 형광 유기발광소자의 특성)

  • Moon, Jong-Min;Bae, Jung-Hyeok;Jeong, Soon-Wook;Kang, Jae-Wook;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1044-1049
    • /
    • 2006
  • We reported on characteristics of the fluorescent OLED fabricated on commercial ITO/glass and BCS grown IZO/glass substrate, respectively. The amorphous IZO anode film grown by box cathode sputtering(BCS) exhibited similar electrical and optical characteristics to commercial ITO anode even though it was deposited at room temperature. In addition, the amorphous IZO anode showed higher workfunction (5.2 eV) than that of the commercial ITO anode (5.0 eV) after ozone treatment for 10 min. Furthermore, fluorescent OLED fabricated on amorphous IZO anode film showed improved current-voltage-luminance characteristics, external quantum efficiency and power efficiency en contrast with fluorescent OLED fabricated on commercial ITO anode film. It was thought that smooth surface and high workfunction of amorphous IZO anode lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers.

Room Temperature Fabrication of Organic Flexible Displays using Amorphous IZO Anode Film (비정질 IZO 애노드 박막을 이용한 유기물 플렉서블 디스플레이의 상온 제작)

  • Moon, Jong-Min;Bae, Jung-Hyeok;Jeong, Soon-Wook;Park, No-Jin;Kang, Jae-Wook;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.687-694
    • /
    • 2006
  • We report on the fabrication of organic-based flexible displays using an amorphous IZO anode grown at room temperature. The IZO anode films were grown by a conventional DC reactive sputtering on the polycarbonate (PC) substrate at room temperature using a synthesized IZO target in a $Ar/O_2$ ambient. Both x-ray diffraction (XRD) and high resolution electron microscope (HREM) examination results show that the IZO anode film grown at room temperature Is complete amorphous structure due to low substrate temperature. A sheet resistance of $35.6\Omega/\Box$, average transmittance above 90 % in visible range, and root mean spare roughness of $6\sim10.5\AA$ were obtained even in the IZO anode film grown on PC substrate at room temperature. It is shown that the $Ir(ppy)_3$ doped flexible organic light emitting diode (OLED) fabricated on the IZO anode exhibit comparable current-voltage-luminance characteristics as well as external quantum efficiency and power efficiency to OLED fabricated on conventional ITO/Glass substrate. These findings indicate that the IZO anode film grown on PC substrate is a promising anode materials for the fabrication of organic based flexible displays.

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System (Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.646-652
    • /
    • 2022
  • The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.

도너층 CuPc의 두께변화에 따른 광기전력 효율 특성

  • Kim, Won-Jong;Choe, Hyeon-Min;Choe, Gwang-Jin;Kim, Tae-Wan;Hong, Jin-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.280-280
    • /
    • 2009
  • In a structure of ITO/CuPc/Al, we have studied that the properties of photovoltaic efficiency of copper phthalocyanine(CuPc) in donor layer using simulation. As a rusult, we have confirmed that anode current density is decreased and anode voltage is increased as increasing the thickness of CuPc. Also, when the light intensities is 10 [$mW/cm^2$], the external quantum efficiency is better than the others at the best wavelength of visible spectrum..

  • PDF