Abstract: In a structure of ITO/CuPc/AI, we have studied the properties of photovoltaic efficiency of copper phthalocyanine(CuPc) in donor layer using simulation. As a result, we have confirmed that anode current density is decreased and anode voltage is increased as increasing the thickness of CuPc. Also, when the light intensities is 10 [mW/cm²], the external quantum efficiency is better than the others at the best wavelength of visible spectrum.

Key Words: Photovoltaic, External quantum efficiency, Donor layer, Anode current density, Anode voltage

1. 서 론

태양광 소자는 크게 별형형과 박막형으로 구분되며 박막형에는 무기물과 유기물을 이용한 소자로 구분할 수 있다. 최근 유기박막 태양광 소자는 활발한 연구가 진행되고 있으나 어려운 녹색의 낮은 에너지 전환 효과를 가지고 있다. 따라서 본 연구에서는 태양광 소자의 donor층 재료로 널리 사용되고 있는 copper phthalocyanine (CuPc)'s 두께변환을 이용한 후 광원의 세기 변화에 따른 파장에 대한 유기 광전력 소자의 외부 양자 효율 특성을 시뮬레이션을 사용하여 분석한 결과를 소개한다.

2. 실험

SILVACO에서 제공하는 Organic Solar cells 시뮬레이션 프로그램인 ATLAS 프레임 워크를 사용하였으며, 구조는 ITO/CuPc/AI이며 CuPc의 두께는 10, 20, 30, 50, 80, 100 [nm]로 변환하여 최적의 두께 40 [nm]를 갖춘 후 광원의 세기는 10, 25, 60, 80, 100 [mW/cm²]인가하여 가시광선 파장의 영역별로 시뮬레이션을 이용하여 외부 양자 효율 특성을 분석하였다. 분석된 결과는 Origin 프로그램을 사용하였고 실제 데이터와 비교 검토하였다.

3. 결과 및 검토

그림 1은 ITO/CuPc/AI 구조에서 donor층 물질로 사용된 CuPc의 두께변환에 따른 에너드의 전압-전류밀도를 나타내었다. CuPc의 두께가 증가함에 따라, 에너드 전류밀도는 감소하고 전압은 정점 증가함을 확인하였다. 이것은 CuPc의 두께가 증가함으로서 전화도 증가하기 때문이라는 생각된다.

그림 2는 donor층 물질로 사용된 CuPc의 두께를 40 [nm]인 경우 광원의 세기에 대한 가시광선 파장의 영역에 대한 외부 양자 효율 값을 나타내었다. 전반적으로 광원의 세기가 증가함수록 가시광선의 파장에서 범위가 475 [nm]까지 외부 양자 효율은 감소함을 확인하였고 그 이후에는 다시 효율이 증가함을 확인하였다. 특히 가시광선 파장의 범위가 580 [nm]일 때 모든 광원의 세기가 최대 효율값을 나타내었다. 이것은 일반적으로 최대 가시광선 시간이 거의 외의 유사함을 확인하였다. 그러나 이 이후에 가시광선 파장의 범위는 다시 외부 양자 효율 값이 감소함을 확인하였다. 특히 광원의 세기가 10 [mW/cm²]일 때 최대 외부 양자 효율 값을 나타내었다.

4. 결론

시뮬레이션을 이용한 도너층인 CuPc의 높가전력의 효율 특성을 연구한 결과 CuPc의 두께가 증가함으로서 에너드 전류밀도는 감소하고 전압은 증가함을 확인하였으며 광원의 세기에 따른 가시광선 파장의 범위는 580 [nm]일 때 최대 외부 양자 효율 값을 나타내었으며 특히 광원의 세기가 10 [mW/cm²] 일 때 최대 외부 양자 효율 값을 나타내었다.

감사의 글

본 연구는 중소기업청의 "산업 공동기술개발원사업을 통해 개발된 결과물" 연구비 지원에 의한 것입니다.