• 제목/요약/키워드: Anode current density

검색결과 408건 처리시간 0.024초

IT-SOFC의 전류밀도 및 온도분포에 관한 수치해석 연구 (A Numerical study on current density and temperature distributions of IT-SOFC)

  • 손상호;이규진;남진현;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3067-3072
    • /
    • 2008
  • A two-dimensional model for anode-supported IT-SOFCs is proposed in order to accurately consider the heat and mass transport processes with a fully-developed axial velocity profile in channel flow. A comprehensive micro model is employed to describe the electrochemical reaction in anode and cathode of SOFCs. This paper investigates the effects of operational parameters (inlet temperature, the amount of flow rate, and air flow rate) including flow configurations (co-flow and counter-flow) on the current density and temperature distributions in the IT-SOFCs.

  • PDF

리튬이온전지 음극의 고속 성능 향상을 위한 도전재 복합화 (Composited Conductive Materials for Enhancing the Ultrafast Performance for Anode in Lithium-Ion Battery)

  • 성기욱;안효진
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.474-480
    • /
    • 2022
  • Lithium-ion batteries (LIBs) are powerful energy storage devices with several advantages, including high energy density, large voltage window, high cycling stability, and eco-friendliness. However, demand for ultrafast charge/discharge performance is increasing, and many improvements are needed in the electrode which contains the carbon-based active material. Among LIB electrode components, the conductive additive plays an important role, connecting the active materials and enhancing charge transfer within the electrode. This impacts electrical and ionic conductivity, electrical resistance, and the density of the electrode. Therefore, to increase ultrafast cycling performance by enhancing the electrical conductivity and density of the electrode, we complexed Ketjen black and graphene and applied conductive agents. This electrode, with the composite conductive additives, exhibited high electrical conductivity (12.11 S/cm), excellent high-rate performance (28.6 mAh/g at current density of 3,000 mA/g), and great long-term cycling stability at high current density (88.7 % after 500 cycles at current density of 3,000 mA/g). This excellent high-rate performance with cycling stability is attributed to the increased electrical conductivity, due to the increased amount of graphene, which has high intrinsic electrical conductivity, and the high density of the electrode.

전기분해에 의한 고농도 유기물질 제거 특성 (Removing High Concentration Organic Matters by Using Electrolysis)

  • 길대수;이병헌;이제근
    • 대한환경공학회지
    • /
    • 제22권2호
    • /
    • pp.251-264
    • /
    • 2000
  • 합성폐수의 전기분해에 의한 전류밀도, 체류시간, 전극간격 및 $Cl^-/COD_{Cr}$ 비에 대한 유기물질 제거 특성을 조사하기 위한 실험을 수행하였다. 양극판은 티타늄에 이산화이리듐을 전착한 $Ti/IrO_2$ 극판으로 하였으며, 음극판은 스테인리스 스틸판을 사용하였다. 판형태와 망형태의 전극을 사용한 경우 $COD_{Cr}$ 제거율은 비슷하게 나타났으나, 전력비는 판형태보다 망형태의 전극에서 저렴한 것으로 나타났다. $COD_{Cr}$ 제거율 70 %를 얻는데 소요되는 $Cl^-/COD_{Cr}$ 비는 약 $1.3kgCl^-/kgCOD_{Cr}$으로 나타났으며, $COD_{Cr}$을 완전히 제거하는데 약 $2.2kgCl^-/kgCOD_{Cr}$이 필요하였다. 유기물질의 제거는 전류밀도, 체류시간 및 $Cl^-/COD_{Cr}$ 비에 따라 높게 나타났고, 전극간격에는 반비례하였으며, 운전인자와 제거율과의 관계는 아래와 같이 나타났다. $$COD_{Cr}(%)=80.0360(Current\;density)^{0.4451}{\times}(HRT)^{0.8102}{\times}(Gap)^{-0.4915}{\times}(Cl^-/COD_{Cr})^{0.5805}$$ 유기물질과 질소를 동시에 전기분해할 경우 두 물질의 산화는 경쟁관계에 있으며, 암모니아성 질소를 산화하는데 우선적으로 작용하여 유기물질의 제거는 낮아지지만, 알칼리도 첨가에 의해 유기물질 제거가 증가하였다.

  • PDF

컴퓨터 Simulation을 통한 선체 음극방식(ICCP)의 방식전위분포해석 (An Analysis of the Protective Potential Distribution against Corrosion for Hull ICCP with Computer simulation)

  • 임관진;김기준;이명훈;문경만
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.395-400
    • /
    • 2005
  • The ship hull part is always exposed to severe corrosive environments. Therefore, it should be protected in appropriate ways to reduce corrosion problems. So there are two effective methods in order to protect the corrosion of ship hull. One is the paint coating as a barrier between steel and electrolyte (seawater) and the other is the cathodic protection(CP) supplying protection current. In the conventional design process of the cathodic protection system the required current densities of protected materials have been used. However, the anode position of field or laboratory experiment for obtaining the required current density for CP is significantly different from anode position for real structures. Therefore, the recent CP design must consider the optimum anode position for potential distribution equally over the ship hull. The CP design companies in the advanced countries can obtain the potential distribution results on the cathodic materials by using the computer analysis module. This study would show how to approach the potential analysis in the field of corrosion engineering. The computer program can predict the under protection area on the structure when the boundary condition and analysis procedure are reasonable. In this analysis the polarization curve is converted to the boundary condition in material data.

  • PDF

유한요소해석을 이용한 전주공정에서의 전류밀도 분포 예측 (Estimate of Current Density Distribution in Electroforming Process Using Finite Element Analysis)

  • 강대철;김헌영;전병희
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.279-284
    • /
    • 2004
  • Electroforming is the highly specialized use of electrodeposition for the manufacture of metal parts and basically a specialized form of electroplating. So, we can apply electrochemical system analysis for electroforming process. Electrochemical systems are concerned with the interplay between electricity and chemistry, namely the measurements of electrical quantities, such as current density, potential, and charge, and their relationship to chemical parameters. This paper based on the basic equations of electrics and electrochemical kinetics, was employed for a theoretical explanation of the current density distribution on electroforming process. We calculated current density distribution and potential distribution on cathode. Also, calculated current density distribution of vertical direction. It was shown that current density is related with distance of between anode and cathode and mass transfer process.

턴-오프 특성이 향상된 Shorted Anode 수평형 MOS 제어 다이리스터 (A shorted anode lateral MOS controlled thyristor with improved turn-off characteristics)

  • 김성동;한민구;최연익
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.562-567
    • /
    • 1996
  • A new lateral MOS controlled thyristor, named Shorted Anode LMCT(SA-LMCT), is proposed and analyzed by a two-dimensional device simulation. The device structure employs the implanted n+ layer which shorts the p+ anode together by a common metal electrode and provides a electron conduction path during turn-off period. The turn-off is achieved by not only diverting the hole current through the p+ cathode short but also providing the electron conduction path from the n-base into the n+ anode electrode. In addition, the modified shorted anode LMCT, which has an n+ short junction located inside the p+ anode junction, is also presented. It is shown that the modified SA-LMCT enjoys the advantage of no snap-back behavior in the forward characteristics with little sacrificing of the forward voltage drop. The simulation result shows that the turn-off times of SA-LMCT can be reduced by one-forth and the maximum controllable current density may be increased by 45 times at the expense of 0.34 V forward voltage drop as compared with conventional LMCT. (author). 11 refs., 6 figs., 1 tab.

  • PDF

용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구 -Cu-base 전극에 대하여- (A study on the developmenet of Anode Material for Molten Carbonate Fuel Celt - Cu-base electrode-)

  • 박재우;김용덕;황응림;김선진;강성군
    • 한국표면공학회지
    • /
    • 제28권4호
    • /
    • pp.243-254
    • /
    • 1995
  • The fabrication process of Cu-base anode for replacing Ni-base anode of molten carbonate fuel cell was investigated. Electrochemical performance and thermal stability of Cu-base anode were also investigated. Green sheet was prepared by mixing Cu and Ni powder with 1.5wt% methylcellulose and 100wt% water. The pore-size distribution of the Cu-base anode sintered at $800^{\circ}C$ for 30min showed almost uniform pore-size ranging from 4 to 20$\mu\textrm{m}$ and it was considered suitable for MCFC anode. Cu-Ni anode containing between 35 to 50wt% Ni exhibited current density of 111mA/$\textrm{cm}^2$ at 100mV overpotential and it was almost the some value for pure Ni anode. The sintering resistance of Cu-Ni increased with an increase of Ni addition. It was considered that the increase of sintering resistance was due to the decrease of diffusion rate of Cu and Ni with increasing the addition of Ni in Cu-Ni alloy.

  • PDF

A New EST with Dual Trench Gate Electrode (DTG-EST)

  • Kim, Dae-Won;Sung, Man-Young;Kang, Ey-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권2호
    • /
    • pp.15-19
    • /
    • 2003
  • In this paper, the new dual trench gate Emitter Switched Thyristor (DTG-EST) is proposed for improving snap-back effect which leads to a lot of serious problems of device applications. Also the parasitic thyristor that is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and 35A/$\textrm{cm}^2$, respectively. But the proposed DTG-EST exhibits snap-back with the anode voltage and current density 0.96V and 100A/$\textrm{cm}^2$, respectively.

700V급 듀얼 트랜치 게이트를 가지는 Emitter Switched Thyristor(EST) (700V Emitter Switched Thyristor(EST) with Dual Trench Gate)

  • 김대원;성만영;강이구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 기술교육전문연구회
    • /
    • pp.27-30
    • /
    • 2003
  • In this paper, the new dual trench gate Emitter Switched Thyristor (DTG-EST) is proposed for improving snap-back effect which leads to a lot of serious problems of device applications. And the parasitic thyristor that is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $35A/cm^2$, respectively. But the proposed DTG-EST exhibits snap-back with the anode voltage and current density 0.96V and $100A/cm^2$, respectively.

  • PDF

펄스 도금법에 의한 메탄연료 직접 사용을 위한 Cu-Ni-YSZ SOFC 연료극 제조 및 특성평가 (Fabrication and Characterization of Cu-Ni- YSZ SOFC Anodes for Direct Utilization of Methane via Cu pulse plating)

  • 박언우;문환;이종진;현상훈
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.807-814
    • /
    • 2008
  • The Cu-Ni-YSZ cermet anodes for direct use of methane in solid oxide fuel cells have been fabricated by electroplating Cu into the porous Ni-YSZ cermet anode. The uniform distribution of Cu in the Ni-YSZ anode could be obtained via pulse electroplating in the aqueous solution mixture of $CuSO_4{\cdot}5H_{2}O$ and ${H_2}{SO_4}$ for 30 min with 0.05 A of average applied current. The power density ($0.17\;Wcm^{-2}$) of a single cell with a Cu-Ni-YSZ anode was shown to be slightly lower in methane at $700^{\circ}C$, compared with the power density ($0.28\;Wcm^{-2}$) of a single cell with a Ni-YSZ anode. However, the performance of the Ni-YSZ anode-supported single cell was abruptly degraded over 21 h because of carbon deposition, whereas the Cu-Ni-YSZ anode-supported single cell showed the enhanced durability upto 52 h.