• Title/Summary/Keyword: Annual fuel consumption

Search Result 45, Processing Time 0.026 seconds

Developing an Energy Consumption Model of Household Unit in Rural Area (농촌지역 농가 에너지소비 모델 개발)

  • Rhee, Shin-Ho;Wang, Jun;Yoon, Seong-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.99-109
    • /
    • 2008
  • As the price of traditional fossil fuels continue to increase, more people attach importance to the pollution of the environment caused by fossil fuel's burning, developing and using renewable energy resources has become a very important project all over the world. Also, the rural energy planning which is another method to improve energy utilization ratio and reduce environment pollution, is also regarded as a very effective way to reduce the energy consumption. There is a quantity of renewable energy resources and natural tribes in rural area, which is both feasible to develop the renewable energy and the regional energy planning. To carry out this, it is needs to know the area's quantity of renewable energy resources and the total energy consumption. This paper is to find out the relationship between rural energy consumption and rural conditions, and to found a energy consumption model which can conjecture the energy consumption in rural family. and the cost of rural family's energy consumption was founded to conjecture how much money dose it cost in rural family's energy consumption. The energy consumption model was concluded using the surveys of 76 families in 14 villages at the area of Chungcheongbuk-Do(province). The main factors to energy consumption was selected out which were number of family members, acreage of house, acreage of farmland and family's annual income.

A Study on the Annual Increase of Air Pollutant Emissions in Korea (대기오염물질(大氣汚染物質) 배출량(排出量)의 연도별추세(年度別趨勢)에 관(關)한 연구(硏究))

  • Cho, Moon-Whan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 1976
  • In order to provide bases for the control of air pollutants in Korea, the author figured out the trend on the annual increase of air pollutants emitted in the process of combustions, and estimated the amounts of air pollutants of the future years from 1975 to 1981. 1) In 1973 the consumption rate of coal was 1.2 times of that of fuel oil. The consumption rate of them would be same in 1975 and 1977. However, the rate of fuel oil would exceed that of coal in 1979. Incontrast with the rate in 1979. The one of coal would be increased faster and faster to show reverse trend of consumption in 1981. 2) The estimated amounts of air pollutant emissions in the years of 1973, 1975, 1977, 1979 ana 1981 were 1,561,800, 1,921,700, 2,253,300, 2,769,000, and 3,145,700 tons respectively. These indicated that the amount of air pollutants in 1981 would be about 2 times of that in 1973. 3) The amounts of sulfur oxides emissions in 1981 would be 2.3 times of that in 1973, nitrogen oxides 2.2 times, carbon monoxide 1.7 times, particulate 2.0 times and hydrocarbon 2.0 times. 4) The estimated amounts of air pollutant emissions per unit area($km^2$) in the years of 1965, 1971, 1975 and 1980 were 5.2, 14.5, 19.5 and 28.7 tons respectively. These indicated that the amount of air pollutant emissions per unit area would increase 5.5 times in 1980 comparing the one in 1965.

  • PDF

Development of Bastard Indigo (Amorpha fraticosa) Utilization for Pulping (쪽제비 싸리의 팔프 이용(利用))

  • 산림청 임업시험장
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.39-41
    • /
    • 1974
  • Bastard indigo, prevailing shrub species planted in erosion control work to constitute vegetation, is proved to be usefull for pulp material other than existing usage of green manure or fuel. Pulp made from bastard indigo is good enough for filler pulp though the quality of it is not remarkably excellent. (1) Sorts of paper possible to make from this pulp. Packing paper of medium grade. (general packing paper except heavy packing) (2) Traits of this pulp as for pulp material (A) It is more preferable than annual plants in these respects, ego collection, transport and storage of pulp material, and yield, freeness and chemical consumption of pulp. (B) Annual probable production of pulp material per ha from this plant is higher than that from long-term tree species or similar to that from fast growing species. (C) Its cultivation on eroded area is welcomed and consecutive annual production of material by copice method is also proved possible.

  • PDF

A Study on the Calculation of Standard Data for Energy Use Plan of Industry Complex (산업단지 에너지사용계획을 위한 표준데이터 산정 연구)

  • Suh, Kwang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.101-109
    • /
    • 2014
  • The Consultation about Energy Use Plan is prescribed by the Energy Use Rationalization Act. This study calculated the Standard Data for Energy Use Plan of Industry Complex by the 9th Korean Standard Industrial Classification Divisions so that the energy demand reflecting the industrial technology change and characteristics of Manufacturing Divisions would predict. To achieve this aim, analysis on thousands of data in Energy Consumption Report Forms reported from industries which annual consumption of energy exceeds 2,000toe from 2009 to 2010 was carried out. The results showed that calculated overall mean fuel basic unit decrease, electricity basic unit increase and energy basic unit increase compared to that of the Notification No. 2002-130 of the Ministry of Commerce, Industry and Energy, therefore it means that heat source of energy facilities transferred from fuel to electricity. Also resultingly suggests that the related notification, code etc. are amended as soon as possible.

Energy Efficiency and CO2 Emissions of the Transportation System of Kazakhstan: A Case of Almaty

  • Yessekina, Aiman;Urpekova, Amina
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.2 no.3
    • /
    • pp.41-46
    • /
    • 2015
  • Energy saving in the transport sector in the framework of the annual growth of energy consumption, the degree of negative impact on the environment and the amount of harmful emissions are becoming increasingly important. The article considers the world tendencies of energy consumption in transportation sector and emphasizes its dependency from oil. Also article describes the dynamics of energy use and CO2 emissions from transport of city Almaty. In conclusion authors identify a number of problems in the transport sector, which hinder the implementation of energy efficiency measures and measures to reduce CO2 emissions.

INFLUENCING (NANO)PARTICLE EMISSIONS OF 2-STROKE SCOOTERS

  • Czerwinski, J.;Comte, P.;Reutimann, F.;Mayer, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.237-244
    • /
    • 2006
  • Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape(SAEFL, BUWAL). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburetor were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet. Also the particle mass emission(PM) was measured with the same method as for Diesel engines. It can be stated, that the oil and fuel quality have a considerable influence on the particle emissions, which are mainly oil condensates. The engine technology influences the (nano)particle emissions by: mixture preparation, mixture tuning, oil consumption, postoxidation, quality, condition and temperature of the catalyst. Since the particulate emission of the 2-S consists mainly of lube oil condensates the minimization of oil consumption stays always an important goal.

A Study on the Energy Consumption of Elementary Schools in Daejeon Metropolitan City (대전광역시 초등학교의 에너지 사용에 관한 조사연구)

  • Lee, Sang Hyeok;Park, Seung Ik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • The purpose of this study was to analyze the energy consumption according to the HVAC systems in 122 elementary schools. To do this, we classified schools according to the HVAC systems. Selected schools were classified to the following groups by the HVAC equipments: EHP, EHP and GHP together and GHP. In addition we divided schools by the number of classes. The main results are as follow: 1) Annual average energy consumption at schools was about 300~900(kWh/students), $30{\sim}50(kWh/m^2)$, 9,000~29,000((kWh/class) 2) The smaller schools, the higher the energy consumption per class; energy usage of 10~19 classes's schools were approximately 3 times higher than 40 classes's schools. 3) Schools where the EHP was installed had the lowest energy costs and energy usage. The difference in energy costs was lower than the difference in energy usage because of the fuel price and the ratio of energy sources.

Role of Atmospheric Purification by Trees in Urban Ecosystem -in the Case of Yongin- (도시생태계 수목의 대기정화 역할 -용인시를 사례료-)

  • 조현길;안태원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.38-45
    • /
    • 2001
  • This study quantified annual $CO_2$, SO$_2$ and NO$_2$ uptake and annual $O_2$ production by trees in Yongin´s urban ecosystem, and explored values of urban tree plantings in atmospheric purification. Woody plant cover was only 7.7% with planting density of 1. trees/100$m^2$, and the tree-age structure was largely characterized by a young, growing tree population. Annual per capita pollutant emissions from fossil fuel consumption were 7.3t/yr for $CO_2$, 7.6kg/yr for SO$_2$, and 26.6kg/yr for NO$_{x}$. Carbon dioxide storage per unit urban area by trees was 13.1t/ha and the economic value for $CO_2$ storage was ₩6.6millions/ha. Annual atmospheric purification was 2.0t/ha/yr for $CO_2$ uptake, 2.0kg/ha/yr for SO$_2$ uptake, 4.0kg/ha/yr for NO$_2$ uptake and 1.5t/ha/yr for $O_2$ production, and the annual economic value for the atmospheric purification was ₩1.5millions/ha/yr. Urbantrees stored an amount of $CO_2$ equivalent to about 3.1% of the total annual $CO_2$ emissions, and annually offset total $CO_2$ emissions by 0.5%. Annual SO$_2$ and NO$_2$ uptake by trees equaled 0.5% of total SO$_2$ emissions and 0.3% of total NO$_{x}$ emissions, respectively. Urban trees also played an important role through producing annually 9.2 of the $O_2$ requirement for Yongin´s total population, despite relatively poor tree plantings. Future active plantings and greenspace enlargement in the study city could enhance the role of atmospheric purification by urban trees. The results from this study are expected to be useful in emphasizing environment benefits of urban trees, and in urging the continuous necessity for tree planting and management budget.get.

  • PDF

Energy Saving and Reduction of Atmospheric $CO_2$ Concentration by, and Planning Guideline for Urban Greenspace (도시녹지의 에너지절약 및 대기 $CO_2$ 농도저감과 계획지침)

  • 조현길;이기의
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.38-47
    • /
    • 2000
  • Carbon dioxide is a major greenhouse gas causing climate change. This study quantified annual direct and indirect uptake of carbon by urban greenspace, and annual carbon release from vegetation maintenance and fossil fuel consumption. The study area was whole Chuncheon and Kangleung, and also two districts of Kangnam and Junglang in Seoul, cities located in middle Korea. Carbon uptake by urban greenspace played an important role through offsetting carbon release by 6-7% annually in Chuncheon and Kangleung. For Kangnam and Junglang, where the population density was relatively higher, urban greenspace annually offset carbon release by 1-2%. Future possible tree plantings could double annual carbon uptake by existing trees in urban lands (except natural and agricultural lands) of a study city. Based on study results, planning and management guidelines for urban greenspace were suggested to save energy and to reduce atmospheric $CO_2$ concentrations. They included selection of optimum tree species, proper planting location from buildings, design of multilayered planting, amendment of existing regulations for greenspace enlargement, avoidance f intensive vegetation maintenance, and conservation of natural vegetation.

  • PDF

Estimation of the Temporal and Spatial Distribution of Anthropogenic Heat in Daegu (대구지역 인공열의 시공간적 분포 추정에 관한 연구)

  • 안지숙;김해동;홍정혜
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1045-1054
    • /
    • 2002
  • Urban atmospheric conditions are usually settled as warmer, drier and dirtier than those of rural counterpart owing to reduction of green space and water space area heat retention in surfaces such as concrete and asphalt, and abundant fuel consumption. The characteristics of urban climate has become generally known as urban heat island. The purpose of this study is to investigate the temporal and spatial distribution of the heat emission from human activity, which is a main factor causing urban heat island. In this study, the anthropogenic heat fluxes emitted from vehicles and constructions are estimated by computational grid mesh which is divided by 1km $\times$ 1km. The anthropogenic heat flux by grid mesh can be applied to a numerical simulation model of the local circulation model. The constructions are classified into 9 energy-consumption types - hospital, hotel, office, department store, commercial store, school, factory, detached house and flat. The vehicles classified into 4 energy-consumption types - car, taxi, truck and bus. The seasonal mean of anthropogenic heat flux around central Daegu exceeded $50 W/m^2$ in winter. The annual mean anthropogenic heat flux exceeded $20 W/m^2$. The values are nearly equivalent to the anthropogenic heat flux in the suburbs of Tokyo, Japan.