• Title/Summary/Keyword: Anionic Species

Search Result 58, Processing Time 0.022 seconds

Mode of Action of Several Surfactants on Paraquat Efficacy (Paraquat 활성에 미치는 계면활성제의 작용기구)

  • Choi, Jung-Sup;Hwang, In-Taek;Kim, Jin-Seok;Kim, Tae-Joon;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.3
    • /
    • pp.193-201
    • /
    • 2002
  • The effects of 24 ionic and nonionic surfactants on paraquat (1, 1' -dimethyl-4 4'-bipyridinium) efficacy were investigated with several annual plant species under greenhouse conditions. The paraquat efficacy was decreased or even lost when treated with the anionic surfactants tested. However, the efficacy of paraquat was significantly increased by 7 nonionic surfactants such as sorbitan palmitate, sorbitan stearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene stearyl ether, polyoxyethylene laurylamine ether, and polyoxyethylene stearylamine ether. Among these tested surfactants, 0.08% of polyoxyethylene laurylamine ether most significantly increased the paraquat activity, and the $GR_{50}$ value of paraquat with polyoxyethylene laurylamine ether was 1.6 times lower than the $GR_{50}$ value without polyoxyethylene laurylamine ether. In in vitro experiments, cellular leakage and chlorophyll contents between the application with and without polyoxyethylene laurylamine ether did not show significant changes. The absorption rate of $^{14}C$ paraquat in the treatment with polyoxyethylene laurylamine ether showed an absorption rate of 1.6 times higher than without surfactant. These results suggest that using compatible surfactants would increase the paraquat efficacy, and this increasing are due to improved absorption rate with the surfactant.

Effect of Target Material and the Neutron Spectrum on Nuclear Transmutation of 99Tc and 129I in Nuclear Reactors (표적물질 및 중성자 스펙트럼이 99Tc과 129I의 원자로 내부 핵변환에 미치는 영향)

  • Kang, Seung-gu;Lee, Hyun-chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • As a rule, geological disposal is considered a safe method for final disposal of high-level radioactive waste. However, some long-lived fission products like $^{99}Tc$ and $^{129}I$ contained in spent nuclear fuel are highly mobile as less sorbing anionic species in the subsurface environment and can mainly cause exposure dose to the ecosystem by emission of beta rays in the hundreds of keV range. Therefore, if these two nuclides can be separated and converted with high efficiency into radioactively unharmful nuclides, this would have a positive effect on disposal safety. One candidate method is to transmute these two nuclides in nuclear reactors into short-lived nuclides or into stable nuclides. For this purpose, it is necessary to evaluate which reactor type is more efficient in burning these two nuclides. In this study, the simulation results of nuclear transmutation of $^{99}Tc$ and $^{129}I$ in light water reactor (PWR), heavy water reactor (CANDU) and fast neutron reactor (SFR, MET-1000) are compared and discussed.

Electrochemical Mass Transport Control in Biomimetic Solid-State Nanopores (생체모사형 나노포어를 활용한 전기화학 기반 물질전달 조절 시스템)

  • Soongyu Han;Yerin Bang;Joon-Hwa Lee;Seung-Ryong Kwon
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.43-55
    • /
    • 2023
  • Mass transport through nanoporous structures such as nanopores or nanochannels has fundamental electrochemical implications and many potential applications as well. These structures can be particularly useful for water treatment, energy conversion, biosensing, and controlled delivery of substances. Earlier research focused on creating nanopores with diameters ranging from tens to hundreds of nanometers that can selectively transport cationic or anionic charged species. However, recent studies have shown that nanopores with diameters of a few nanometers or even less can achieve more complex and versatile transport control. For example, nanopores that mimic biological channels can be functionalized with specific receptors to detect viruses, small molecules, and even ions, or can be made hydrophobic and responsive to external stimuli, such as light and electric field, to act as efficient valves. This review summarizes the latest developments in nanopore-based systems that can control mass transport based on the size of the nanopores (e.g., length, diameter, and shape) and the physical/chemical properties of their inner surfaces. It also provides some examples of practical applications of these systems.

Three Crystal Structures of Dehydrated Partially $Co^{2+}-Exchanged$ Zeolite A Treated with Potassium Vapor (부분적으로 코발트 이온으로 치환한 제올라이트 A를 진공 탈수한 후 칼륨 증기로 반응시킨 3개의 결정구조)

  • Jeong Mi Suk;Jang Se Bok
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.59-68
    • /
    • 2004
  • Three crystal structures of dehydrated partially $Co^{2+}-exchanged$ zeolite A treated with 0.6 Torr of K at $300^{\circ}C$ (for 12 hrs, 6 hrs, and 2 hrs) vapor have been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(1)$^{\circ}C(a=12.181(1)\;{\AA},\;a=12.184(1)\;{\AA},\;and\;a=12.215(1)\;{\AA})\;respectively)$. Their structures were refined to the final error indices, R(weight) of 0.090 with 10 reflections, 0.091 with 82 reflections, and 0.090 with 80 reflections, respectively, for which $1>\sigma(I)$. In each structure, all four $Co^{2+}$ and four $Na^+$ ions to be reduced by K atoms. The cobalt and sodium atoms produced are no longer found in the zeolite. K species are found at five different crystallographic sites: three $K^+$ ions lie at the planes of 8-rings, filling that position, ca. 11.5 K^+$ ions lie on threefold axes, ca. 4.0 in the large cavity and ca. 4.0 in the sodalite cavity, and ca. 0.5 $K^+$ ion is found near a 4-ring. ca. three $K^0$ atoms are found deep into the large cavity on threefold axes. In these structures, crystallographic results show that cationic tetrahedral $K_4$ (and/or triangular $K_3$) clusters have formed in the sodalites of zeolite A. The $K_4$ and/or $K_3$ clusters coordinate trigonally to three oxygens of a six-oxygen ring. The partially reduced ions of these clusters interact primarily with oxygen atoms of the zeolite structure rather than with each other. ca. 14.5K species are found per unit cell, more than the twelve $K^+$ ions needed to balance the anionic charge of zeolite framework, indicating that sorption of $K^0$ has occurred. The three $K^0$ atoms in the large cavity are closely associated with three out of four $K^+$ ions in the large cavity to form $K_7^{4+}$ clusters. The $K_7^{4+}$ cluster not interacts primarily with framework oxygens.

Crystal Structures of $Cd_6-A$ Dehydrated at $750^{\circ}C$ and Dehydrated $Cd_6-A$ Reacted with Cs Vapor ($750^{\circ}C$ 에서 탈수한 $Cd_6-A$의 결정구조와 이 결정을 세슘 증기로 반응시킨 결정구조)

  • Se Bok Jang;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.191-198
    • /
    • 1993
  • The crystal structures of $Cd_{6-}A$ evacuated at $2{\times}10^{-6}$ torr and $750^{\circ}C$ (a = 12.204(1) $\AA$) and dehydrated $Cd_{6-}A$ reacted with 0.1 torr of Cs vapor at $250^{\circ}C$ for 12 hours (a = 12.279(1) $\AA$) have been determined by single crystal X-ray diffraction techniques in the cubic space group Pm3m at $21(1)^{\circ}C.$ Their structures were refined to final error indices, $R_1=$ 0.081 and $R_2=$ 0.091 with 151 reflections and $R_1=$ 0.095 and $R_2=$ 0.089 with 82 reflections, respectively, for which I > $3\sigma(I).$ In vacuum dehydrated $Cd_{6-}A$, six $Cd^{2+}$ ions occupy threefold-axis positions near 6-ring, recessed 0.460(3) $\AA$ into the sodalite cavity from the (111) plane at O(3) : Cd-O(3) = 2.18(2) $\AA$ and O(3)-Cd-O(3) = $115.7(4)^{\circ}.$ Upon treating it with 0.1 torr of Cs vapor at $250^{\circ}C$, all 6 $Cd^{2+}$ ions in dehydrated $Cd_{6-}A$ are reduced by Cs vapor and Cs species are found at 4 crystallographic sites : 3.0 $Cs^+$ ions lie at the centers of the 8-rings at sites of $D_{4h}$ symmetry; ca. 9.0 Cs+ ions lie on the threefold axes of unit cell, ca. 7 in the large cavity and ca. 2 in the sodalite cavity; ca. 0.5 $Cs^+$ ion is found near a 4-ring. In this structure, ca. 12.5 Cs species are found per unit cell, more than the twelve $Cs^+$ ions needed to balance the anionic charge of zeolite framework, indicating that sorption of Cs0 has occurred. The occupancies observed are simply explained by two unit cell arrangements, $Cs_{12}-A$ and $Cs_{13}-A$. About 50% of unit cells may have two $Cs^+$ ions in sodalite unit near opposite 6-rings, six in the large cavity near 6-ring and one in the large cavity near a 4-ring. The remaining 50% of unit cells may have two Cs species in the sodalite unit which are closely associated with two out of 8 $Cs^+$ ions in the large cavity to form linear $(Cs_4)^{3+}$ clusters. These clusters lie on threefold axes and extend through the centers of sodalite units. In all unit cells, three $Cs^+$ ions fill equipoints of symmetry $D_{4h}$ at the centers of 8-rings.

  • PDF

Uranium Adsorption Properties and Mechanisms of the WRK Bentonite at Different pH Condition as a Buffer Material in the Deep Geological Repository for the Spent Nuclear Fuel (사용후핵연료 심지층 처분장의 완충재 소재인 WRK 벤토나이트의 pH 차이에 따른 우라늄 흡착 특성과 기작)

  • Yuna Oh;Daehyun Shin;Danu Kim;Soyoung Jeon;Seon-ok Kim;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.603-618
    • /
    • 2023
  • This study focused on evaluating the suitability of the WRK (waste repository Korea) bentonite as a buffer material in the SNF (spent nuclear fuel) repository. The U (uranium) adsorption/desorption characteristics and the adsorption mechanisms of the WRK bentonite were presented through various analyses, adsorption/desorption experiments, and kinetic adsorption modeling at various pH conditions. Mineralogical and structural analyses supported that the major mineral of the WRK bentonite is the Ca-montmorillonite having the great possibility for the U adsorption. From results of the U adsorption/desorption experiments (intial U concentration: 1 mg/L) for the WRK bentonite, despite the low ratio of the WRK bentonite/U (2 g/L), high U adsorption efficiency (>74%) and low U desorption rate (<14%) were acquired at pH 5, 6, 10, and 11 in solution, supporting that the WRK bentonite can be used as the buffer material preventing the U migration in the SNF repository. Relatively low U adsorption efficiency (<45%) for the WRK bentonite was acquired at pH 3 and 7 because the U exists as various species in solution depending on pH and thus its U adsorption mechanisms are different due to the U speciation. Based on experimental results and previous studies, the main U adsorption mechanisms of the WRK bentonite were understood in viewpoint of the chemical adsorption. At the acid conditions (<pH 3), the U is apt to adsorb as forms of UO22+, mainly due to the ionic bond with Si-O or Al-O(OH) present on the WRK bentonite rather than the ion exchange with Ca2+ among layers of the WRK bentonite, showing the relatively low U adsorption efficiency. At the alkaline conditions (>pH 7), the U could be adsorbed in the form of anionic U-hydroxy complexes (UO2(OH)3-, UO2(OH)42-, (UO2)3(OH)7-, etc.), mainly by bonding with oxygen (O-) from Si-O or Al-O(OH) on the WRK bentonite or by co-precipitation in the form of hydroxide, showing the high U adsorption. At pH 7, the relatively low U adsorption efficiency (42%) was acquired in this study and it was due to the existence of the U-carbonates in solution, having relatively high solubility than other U species. The U adsorption efficiency of the WRK bentonite can be increased by maintaining a neutral or highly alkaline condition because of the formation of U-hydroxyl complexes rather than the uranyl ion (UO22+) in solution,and by restraining the formation of U-carbonate complexes in solution.

Study on Adsorption Characteristics of Arsenic on Magnetite (자철석의 비소에 대한 흡착특성 연구)

  • Jeong, Hyeon-Su;Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and $16.6\;g/m^2$, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.