• Title/Summary/Keyword: Angular measurement

Search Result 342, Processing Time 0.021 seconds

Study on the Precision Method of Measuring angular displacement for the Angular Vibration Calibration System (회전 진동 교정 장치 구현을 위한 고정밀 측정기법에 대한 연구)

  • Cheung, Wan-Sup;Lee, Yong-Bong;Lee, Doo-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.685-688
    • /
    • 2004
  • This paper addresses the study on developing the angular vibration calibration system which requires the highly accurate measurement technique of the amplitude and period of an oscillating angular motion. Two developed models for the low and high frequency ranges are introduced and their main features are also compared. In addition to the angular vibration exciters, a new measurement method, referred to the 'equi-angle sampling method', is proposed and its theoretical backgrounds are introduced. The proposed method is shown to provide much less measurement uncertainty, compared the fringe counting method. Experimental results demonstrate what amount of angular vibration amplitude measurement uncertainty is improved by suing the proposed equi-angle sampling method.

  • PDF

A Design of Solid Coupling and Study of Torsoinal Angular error Character (Solid Coupling의 설계 및 비틀림 각도 오차 특성 연구)

  • Roh, Chang-Yell;Lee, Eung-Suk;Ahn, Dong-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.940-944
    • /
    • 2004
  • This is a thesis about the Solid Coupling Design and Torsional Angular Error Character. The solid coupling which is designed and made is a strong rigidity material. This is a experiment of Solid Coupling Torsional Error. The Angular Error, FEM and Circularity Measurement. Devices are Twist Friction Driver, Polygon, Autocollimator and Standard Encoder for Measurement. Coupling caused by elastic deformation causes angular error.

  • PDF

Antenna Alignment Method for Low Angular Error of 3-axis Tracking System

  • Lee, Jeom Hun;Kim, Young Wan;Kim, Nae Soo;Lee, Ho Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.44-54
    • /
    • 2001
  • This paper describes the antenna alignment method of the tracking antenna system for LEO satellite. The purpose of the antenna alignment is to reduce the angular error due to the structural alignment and the monopulse null point alignment error. The angular error of 3 axis tracking system is the key performance parameter that should be minimized to accurately track satellite movement. The angular error is analyzed via a simulation and boresight measurement. The simulation is done with formulas to be derived from vector concept for 3-axis movement. The formulas of the structural alignment are verified by comparing the formula result with the field measurement. Also, the angular error due to monopulse null shift is obtained via boresight measurement. Based on the analyzed and measured results, the antenna alignment was performed and was verified via tracking test of operating LEO satellite.

  • PDF

Validity and Reliability of an Inertial Measurement Unit-Based 3D Angular Measurement of Shoulder Joint Motion

  • Yoon, Tae-Lim
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.3
    • /
    • pp.145-151
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the validity and reliability of the measurement of shoulder joint motions using an inertial measurement unit (IMU). Methods: For this study, 33 participants (32 females and 1 male) were recruited. The subjects were passively positioned with the shoulder placed at specific angles using a goniometer (shoulder flexion $0^{\circ}-170^{\circ}$, abduction $0^{\circ}-170^{\circ}$, external rotation $0^{\circ}-90^{\circ}$, and internal rotation $0^{\circ}-60^{\circ}$ angles). Kinematic data on the shoulder joints were simultaneously obtained using IMU three-dimensional (3D) angular measurement (MyoMotion) and photographic measurement. Test-retest reliability and concurrent validity were examined. Results: The MyoMotion system provided good to very good relative reliability with small standard error of measurement (SEM) and minimal detectable change (MDC) values from all three planes. It also presented acceptable validity, except for some of shoulder flexion, shoulder external rotation, and shoulder abduction. There was a trend for the shoulder joint measurements to be underestimated using the IMU 3D angular measurement system compared to the goniometer and photo methods in all planes. Conclusion: The IMU 3D angular measurement provided a reliable measurement and presented acceptable validity. However, it showed relatively low accuracy in some shoulder positions. Therefore, using the MyoMotion measurement system to assess shoulder joint angles would be recommended only with careful consideration and supervision in all situations.

Limitation of Measurement System in Application of Angular Distortion Criterion to Structure Near Road Embankment (도로 성토 시 인근 구조물에 각변위기준 적용에 있어 계측시스템의 한계성)

  • Kim, Taehyung;Kim, Dongin;Kim, Yuntae;You, Sangho;Jung, Youngeun;Kim, Sungwoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • Angular distortion due to differential settlement is one of the critical factors which influences on the stability and serviceability of a structure. The angular distortion criterion proposed by Bjerrum is generally used in practice. However, the measurement system used in field especially a road embankment site did not properly represent the angular distortion of a structure. The problem was related to the shortage and not proper installation of measurement gauges, and the incorrect understanding of the basic concept of angular distortion in interpretation of measurement data. These things were reveled by analyzing the measured data in the road embankment site. An improved measurement system has been suggested as a so-called "relative displacement measurement system" between columns with automatic measurement.

Fundamental Study of nanoDot OSL Dosimeters for Entrance Skin Dose Measurement in Diagnostic X-ray Examinations

  • Okazaki, Tohru;Hayashi, Hiroaki;Takegami, Kazuki;Okino, Hiroki;Kimoto, Natsumi;Maehata, Itsumi;Kobayashi, Ikuo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Background: In order to manage the patient exposure dose in X-ray diagnosis, it is preferred to evaluate the entrance skin dose; although there are some evaluations about entrance skin dose, a small number of report has been published for direct measurement of patient. We think that a small-type optically stimulated luminescence (OSL) dosimeter, named nanoDot, can achieve a direct measurement. For evaluations, the corrections of angular and energy dependences play an important role. In this study, we aimed to evaluate the angular and the energy dependences of nanoDot. Materials and Methods: We used commercially available X-ray diagnostic equipment. For angular dependence measurement, a relative response of every 15 degrees of nanoDot was measured in 40-140 kV X-ray. And for energy dependence measurement, mono-energetic characteristic X-rays were generated using several materials by irradiating the diagnostic X-rays, and the nanoDot was irradiated by the characteristic X-rays. We evaluated the measured response in an energy range of 8.1-75.5 keV. In addition, we performed Monte-Carlo simulation to compare experimental results. Results and Discussion: The experimental results were in good agreement with those of Monte-Carlo simulation. The angular dependence of nanoDot was almost steady with the response of 0 degrees except for 90 and 270 degrees. Furthermore, we found that difference of the response of nanoDot, where the nanoDot was irradiated from the randomly set directions, was estimated to be at most 5%. On the other hand, the response of nanoDot varies with the energy of incident X-rays; slightly increased to 20 keV and gradually decreased to 80 keV. These results are valuable to perform the precise evaluation of entrance skin dose with nanoDot in X-ray diagnosis. Conclusion: The influence of angular dependence and energy dependence in X-ray diagnosis is not so large, and the nanoDot OSL dosimeter is considered to be suitable dosimeter for direct measurement of entrance surface dose of patient.

Real-Time Compensation of Errors Caused by the Flux Density Non-uniformity for a Magnetically Suspended Sensitive Gyroscope

  • Chaojun, Xin;Yuanwen, Cai;Yuan, Ren;Yahong, Fan;Yongzhi, Su
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by the non-uniformity of the air-gap flux density in a MSSG, this paper proposes a novel compensation method based on measuring and modeling of the air-gap flux density. The angular velocity measurement principle and the structure of the MSSG are described, and then the characteristic of the air-gap flux density has been analyzed in detail. Next, to compensate the flux density distribution error and improve the measurement accuracy of the MSSG, a real-time compensation method based on the online measurement with hall probes is designed. The common issues caused by the non-uniformity of the air-gap flux density can be effectively resolved by the proposed method in high-precision magnetically suspended configurations. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

Analysis, Modeling and Compensation of Dynamic Imbalance Error for a Magnetically Suspended Sensitive Gyroscope

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong;Xu, Guofeng;Lei, Xu
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.529-536
    • /
    • 2016
  • Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by dynamic imbalance, this paper proposes a novel compensation method based on analysis and modeling of the error for a MSSG. Firstly, the angular velocity measurement principle of the MSSG is described. Then the analytical model of dynamic imbalance error has been established by solving the complex coefficient differential dynamic equations of the rotor. The generation mechanism and changing regularity of the dynamic imbalance error have been revealed. Next, a compensation method is designed to compensate the dynamic imbalance error and improve the measurement accuracy of the MSSG. The common issues caused by dynamic imbalance can be effectively resolved by the proposed method in gyroscopes with a levitating rotor. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

An Analysis on the Reduction of Measurement Time Using Interpolation Algorithm in Near-field RCS Measurements for Aircraft Shape (항공기 형상에 대한 근전계 RCS 측정에서 내삽 알고리즘을 이용한 측정시간 단축에 대한 분석)

  • Park, Homin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.339-346
    • /
    • 2022
  • The importance of stealth technology is increasing in modern warfare, and Radar Cross Section(RCS) is widely used as an indicator of stealth technology. It is useful to measure RCS using an image-based near-field to far-field transformation algorithm in short-range monostatic conditions. However, the near-field measurement system requires a longer measurement time compared to other methods. In this work, it is proposed to reduce the measured data using an interpolation method in azimuth angular domain. The calculated far-field RCS values according to the sampling rate is shown, and the performance of the algorithm applied with interpolation in the angular domain is presented. It is shown that measurement samples can be reduced several times by using the redundancy in the angular domain while producing results similar to the conventional method.

Effects of Angular Velocity Components on Head Vibration Measurements (각속도 성분들이 머리진동 측정치에 미치는 영향)

  • Park Yong Hwa;Cheung Wan Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1E
    • /
    • pp.7-15
    • /
    • 2005
  • This paper addresses issues encountered in measuring the general, 6-degree-of-freedom motion of a human head, A complete mathematical description for measuring the head motion using the six-accelerometer configured bite-bar is suggested, The description shows that the six-axis vibration cannot be completely obtained without the roll, pitch and yaw angular velocity components, A new method of estimating the three orthogonal (roll, pitch and yaw) angular velocities from the six acceleration measurements is introduced. The estimated angular velocities are shown to enable further quantitative error analysis in measuring the translational and angular accelerations at the head. To make this point clear, experimental results are also illustrated in this paper. They show that when the effects of angular velocities are neglected in the head vibration measurement the maximum percentage errors were observed to be more than $3 \%$ for the angular acceleration of the head and to be close to $5 \%$ for its translational acceleration, respectively. It means that the inclusion of all the angular velocity dependent acceleration components gives more accurate measurement of the head vibration.