References
- Awan R, Smith J, Boon AJ. Measuring shoulder internal rotation range of motion: a comparison of 3 techniques. Arch Phys Med Rehabil. 2002; 83(9):1229-34. https://doi.org/10.1053/apmr.2002.34815
- Terwee CB, de Winter AF, Scholten RJ et al. Interobserver reproducibility of the visual estimation of range of motion of the shoulder. Arch Phys Med Rehabil. 2005;86(7):1356-61. https://doi.org/10.1016/j.apmr.2004.12.031
- Hayes K, Walton JR, Szomor ZR et al. Reliability of five methods for assessing shoulder range of motion. Aust J Physiother. 2001;47(4):289-94. https://doi.org/10.1016/S0004-9514(14)60274-9
- Williams JG, Callaghan M. Comparison of visual estimation and goniometry in determination of a shoulder joint angle. Physiotherapy. 1990; 76(10):655-7. https://doi.org/10.1016/S0031-9406(10)63103-3
- Omkar SN, Kumar MM, Mudigere D. Postural assessment of arbitrarily taken portrait and profile photographs using ImageJ. J Bodyw Mov Ther. 2007;11(3):231-7. https://doi.org/10.1016/j.jbmt.2006.12.003
- Cutti AG, Giovanardi A, Rocchi L et al. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput. 2008;46(2):169-78. https://doi.org/10.1007/s11517-007-0296-5
- de Vries WH, Veeger HE, Cutti AG et al. Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems. J Biomech. 2010;43(10):1983-8. https://doi.org/10.1016/j.jbiomech.2010.03.007
- Faber GS, Kingma I, Bruijn SM et al. Optimal inertial sensor location for ambulatory measurement of trunk inclination. J Biomech. 2009;42(14): 2406-9. https://doi.org/10.1016/j.jbiomech.2009.06.024
- Kang GE, Gross MM. Concurrent validation of magnetic and inertial measurement units in estimating upper body posture during gait. Measurement. 2016;82:240-5. https://doi.org/10.1016/j.measurement.2016.01.007
- Maykut JN, Taylor-Haas JA, Paterno MV et al. Concurrent validity and reliability of 2d kinematic analysis of frontal plane motion during running. Int J Sports Phys Ther. 2015;10(2):136-46.
- Bullock MP, Foster NE, Wright CC. Shoulder impingement: the effect of sitting posture on shoulder pain and range of motion. Man Ther. 2005; 10(1):28-37. https://doi.org/10.1016/j.math.2004.07.002
- Struzik A, Konieczny G, Stawarz M et al. Relationship between lower limb angular kinematic variables and the effectiveness of sprinting during the acceleration phase. Appl Bionics Biomech. 2016;2016:7840709.
- Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420-8. https://doi.org/10.1037/0033-2909.86.2.420
- Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1997;33(1):159-74. https://doi.org/10.2307/2529310
- Stratford PW, Binkley JM, Riddle DL. Health status measures: strategies and analytic methods for assessing change scores. Phys Ther. 1996; 76(10):1109-23. https://doi.org/10.1093/ptj/76.10.1109
- Stratford PW, Binkley J, Solomon P et al. Defining the minimum level of detectable change for the Roland-Morris questionnaire. Phys Ther. 1996;76(4):359-65. https://doi.org/10.1093/ptj/76.4.359
- Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;8(1):307-10
- Huber ME, Seitz AL, Leeser M et al. Validity and reliability of Kinect skeleton for measuring shoulder joint angles: a feasibility study. Physiotherapy. 2015;101(4):389-93. https://doi.org/10.1016/j.physio.2015.02.002
- Leardini A, Lullini G, Giannini S et al. Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with state-of-the-art gait analysis. J Neuroeng Rehabil. 2014;11:136. https://doi.org/10.1186/1743-0003-11-136
- Orlowski K, Eckardt F, Herold F et al. Examination of the reliability of an inertial sensor-based gait analysis system. Biomed Tech (Berl). 2017.
- Zhou H, Stone T, Hu H et al. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123-33. https://doi.org/10.1016/j.medengphy.2006.11.010
- Cuesta-Vargas AI, Galan-Mercant A, Williams JM. The use of inertial sensors system for human motion analysis. Phys Ther Rev. 2010;15(6): 462-73. https://doi.org/10.1179/1743288X11Y.0000000006
- Gribble P, Hertel J, Denegar C et al. Reliability and validity of a 2-D video digitizing system during a static and a dynamic task. J Sport Rehabil. 2005;14(2):137-49. https://doi.org/10.1123/jsr.14.2.137
- Richards JG. The measurement of human motion: a comparison of commercially available systems. Hum Mov Sci. 1999;18(5):589-602. https://doi.org/10.1016/S0167-9457(99)00023-8
- Reinold MM, Wilk KE, Fleisig GS et al. Electromyographic analysis of the rotator cuff and deltoid musculature during common shoulder external rotation exercises. J Orthop Sports Phys Ther. 2004;34(7):385-94. https://doi.org/10.2519/jospt.2004.34.7.385
Cited by
- Reliability and Validity of Measurement Using Smart Phone-Based Goniometer on Pelvic Tilting Angle in Standing and Sitting Position vol.31, pp.1, 2017, https://doi.org/10.18857/jkpt.2019.31.1.35
- Assessment of Shoulder Range of Motion Using a Wireless Inertial Motion Capture Device-A Validation Study vol.19, pp.8, 2019, https://doi.org/10.3390/s19081781
- Comparisons of Test-Retest Reliability of Strength Measurement of Gluteus Medius Strength between Break and Make Test in Subjects with Pelvic Drop vol.31, pp.3, 2019, https://doi.org/10.18857/jkpt.2019.31.3.147
- 발바닥굽힘근 근피로가 발목관절 고유수용성 감각을 감소시키는가? vol.17, pp.3, 2019, https://doi.org/10.21598/jkpnfa.2019.17.3.463
- The Reliability and Validity of Wearable Inertial Sensors Coupled with the Microsoft Kinect to Measure Shoulder Range-of-Motion vol.20, pp.24, 2020, https://doi.org/10.3390/s20247238
- Wearable wireless low-cost electrogoniometer design with Kalman filter for joint range of motion measurement and 3D modeling of joint movements vol.235, pp.2, 2017, https://doi.org/10.1177/0954411920971398
- An Inertial Measurement Unit-Based Wireless System for Shoulder Motion Assessment in Patients with Cervical Spinal Cord Injury: A Validation Pilot Study in a Clinical Setting vol.21, pp.4, 2017, https://doi.org/10.3390/s21041057