• 제목/요약/키워드: Angular acceleration

검색결과 203건 처리시간 0.029초

테니스 서브 속도에 따른 라켓 움직임의 운동학적 변인 비교 (Comparison on the Kinematic Variables of Racket Movement According to Velocity in Tennis Serve)

  • 이동진;오정환;정익수;박찬호;이건희
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.337-345
    • /
    • 2009
  • 본 연구는 테니스 서브 속도에 따른 라켓의 움직임에 대한 운동학적 변인들의 차이를 비교 분석하는데 있다. 연구문제를 해결하기 위해 국내 실업 테니스선수 3명을 대상으로 3대의 고속카메라를 이용하여 3차원 영상분석을 실시하였으며, 다음과 같은 결론을 얻었다. 첫째, 임팩트 순간 라켓의 속도는 전후축 방향으로의 빠른 속도가 중요하며, 이를 위해 라켓의 전방이동이 필요함을 확인하였다. 또한 임팩트 순간까지 라켓의 상향스윙이 이루어지는 것을 확인하였다. 둘째, 임팩트 순간 라켓의 각속도는 좌우축에서의 빠른 각속도가 중요하며, 이를 위해 손목의 강한 굴곡운동이 필요함을 확인하였다. 또한 수직축에서의 각운동도 필요함을 확인하였다. 셋째, 서브 속도는 라켓 가속구간에서 라켓의 증축과 -X축이 이루는 각의 변화를 작게 하는 것이 중요하며, 이는 가속구간에서 라켓을 볼의 진행 방향과 일치하게 이동시켜야 함과 동시에 라켓 가속구간의 시작인 백스크래칭 순간에 라켓을 지면과 수직이 되도록 하여 가속거리를 최대로 하는 것이 서브 속도를 높이는데 중요함을 알 수 있었다.

전자식 X-Y 이축 가속도 센서를 이용한 오프셋 및 경사 충돌에 대한 충돌 판별 성능 개선에 관한 연구 (A Study on Improvement of Crash Discrimination Performance for Offset and Angular Crash Events Using Electronic X-Y 2-Axis Accelerometer)

  • 박서욱;전만철
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.128-136
    • /
    • 2003
  • In today's design trend of vehicle structure, crush zone is fiequently reinforced by adding a box-shaped sub-frame in order to avoid an excessive deformation against a high-speed offset barrier such as EU Directive 96/97 EC, IIHS offset test. That kind of vehicle structure design results in a relatively monotonic crash pulse for airbag ECU(Electronic Control Unit) located at non-crush zone. As for an angular crash event, the measured crash signal using a single-axis accelerometer in a longitudinal direction is usually weaker than that of frontal barrier crash. Therefore, it is not so easy task to achieve a satisfactory crash discrimination performance for offset and angular crash events. In this paper, we introduce a new crash discrimination algorithm using an electronic X-Y 2-axis accelerometer in order to improve crash discrimination performance especially for those crash events. The proposed method uses a crash signal in lateral direction(Y-axis) as well as in longitudinal direction(X-axis). A crash severity measure obtained from Y-axis acceleration is used to improve the discrimination between fire and no-fire events. The result obtained by the proposed measure is logically ORed with an existing algorithm block using X-axis crash signal. Simulation and pulse injection test have been conducted to verify the performance of proposed algorithm by using real crash data of a 2,000cc passenger vehicle.

Flexure Analysis of Inertial Navigation Systems

  • Kim, Kwang-Jin;Park, Chan-Gook;Park, Jai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1958-1961
    • /
    • 2004
  • Ring Laser Gyroscopes used as navigational sensors inherently experience a lock-in region, where very low rotational rates are not measurable. Most RLG manufacturers use a mechanical dither motor that applies a small oscillatory rotational motion larger than this region to resolve this problem. Any input acceleration that bends this dithering axis causes flexure error, which is a noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

  • PDF

ROLL AND PITCH ESTIMATION VIA AN ACCELEROMETER ARRAY AND SENSOR NETWORKS

  • Baek, W.;Song, B.;Kim, Y.;Hong, S.K.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.753-760
    • /
    • 2007
  • In this paper, a roll and pitch estimation algorithm using a set of accelerometers and wireless sensor networks(S/N) is presented for use in a passenger vehicle. While an inertial measurement unit(IMU) is generally used for roll/pitch estimation, performance may be degraded in the presence of longitudinal acceleration and yaw motion. To compensate for this performance degradation, a new roll and pitch estimation algorithm is proposed that uses an accelerometer array, global positioning system(GPS) and in-vehicle networks to get information from yaw rate and roll rate sensors. Angular acceleration and roll and pitch approximation are first calculated based on vehicle kinematics. A discrete Kalman filter is then applied to estimate both roll and pitch more precisely by reducing noise from the running engine and from road disturbance. Finally, the feasibility of the proposed algorithm is shown by comparing its performance experimentally with that of an IMU in the framework of an indoor test platform as well as a test vehicle.

차량 플랫폼에 최적화한 자차량 에고 모션 추정에 관한 연구 (A Study on Vehicle Ego-motion Estimation by Optimizing a Vehicle Platform)

  • 송문형;신동호
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.818-826
    • /
    • 2015
  • This paper presents a novel methodology for estimating vehicle ego-motion, i.e. tri-axis linear velocities and angular velocities by using stereo vision sensor and 2G1Y sensor (longitudinal acceleration, lateral acceleration, and yaw rate). The estimated ego-motion information can be utilized to predict future ego-path and improve the accuracy of 3D coordinate of obstacle by compensating for disturbance from vehicle movement representatively for collision avoidance system. For the purpose of incorporating vehicle dynamic characteristics into ego-motion estimation, the state evolution model of Kalman filter has been augmented with lateral vehicle dynamics and the vanishing point estimation has been also taken into account because the optical flow radiates from a vanishing point which might be varied due to vehicle pitch motion. Experimental results based on real-world data have shown the effectiveness of the proposed methodology in view of accuracy.

교량구조물의 구조적 변형을 측정하는 무선통신기반 변위센서모듈 개발 (Development of Displacement Measuring Sensor Module to Monitoring About Variation and Distortion for Bridge Infrastructure at Wireless Communication Environmental)

  • 류승기;문학룡
    • 한국ITS학회 논문지
    • /
    • 제9권5호
    • /
    • pp.87-95
    • /
    • 2010
  • 도시의 많은 교량 구조물은 내구연한 및 노후 상태에 따라 외형적 변형이 발생하고, 지진과 태풍 등은 노후 시설물의 변형을 더욱 악화시키고 있다. 불규칙하고 미세한 점진적 외형 변형은 육안으로 확인하기 어렵고, 시설물의 성능을 저하시키게 된다. 따라서 최근에 교량 구조물의 이상 거동을 실시간의 무선 방식으로 검지하는 기술이 연구되고 있다. 본 연구는 자이로스코프를 이용하여 구조물의 미소한 물리적 변화량을 실시간으로 측정하는 변위측정모듈을 개발하였다. 개발된 계측 모듈의 성능은 시뮬레이션 실험을 통해 검증하였다.

UKF를 사용한 AHRS의 자기장 측정 편차 추정 (Bias Estimation of Magnetic Field Measurement by AHRS Using UKF)

  • 고낙용;송경섭;정석기;이종무;최현택;문용선
    • 한국해양공학회지
    • /
    • 제31권2호
    • /
    • pp.177-182
    • /
    • 2017
  • This paper describes an unscented Kalman filter approach to estimate the bias in magnetic field measurements. A microelectromechanical systems attitude heading reference system (MEMS AHRS) was used to measure the magnetic field, together with the acceleration and angular rate. A magnetic field is usually used for yaw detection, while the acceleration serves to detect the roll and pitch. Magnetic field measurements are vulnerable to distortion due to hard-iron effect and soft-iron effect. The bias in the measurement accounts for the hard-iron effect, and this paper focuses on an approach to estimate this bias. The proposed method is compared with other methods through experiments that implement the navigation of an underwater robot using an AHRS and Doppler velocity log. The results verify that the compensation of the bias by the proposed method improves the navigation performance more than or comparable to the compensation by other methods.

내리막 달리기의 충격 쇼크와 신체 관절의 운동학적 특징 (Impact shock and kinematic characteristics of the lower extremity's joint during downhill running)

  • 류지선
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.117-129
    • /
    • 2005
  • The purpose of this study was to characterize the impact shock wave and its attenuation, and the kinematic response of the lower extremity's joints to the impact shock during downhill running in which the lower extremity's extensor acts dominantly. For this study, fifteen subjects(mean age:$27.08{\pm}4.39$; mass:$76.30{\pm}6.60$; height:$177.25{\pm}4.11$) were required to run on the 0% grade treadmill and downhill grades of 7%, and 15% in random at speed of their preference. When the participant run, acceleration at the tibia and the sacrum and kinematic data of the lower extremity were collected for 20s so as to provide at least 5 strides for analysis at each grade. Peak impact accelerations were used to calculate shock attenuation between the tibia and sacrum in time domain at each grade. Fast Fourier transformation(FFT) and power spectral density(PSD) techniques were used to analyze impact shock factors and its attenuation in the frequency domain. Joint coordinate system technique was used to compute angular displacement of the ankle and knee joint in three dimension. The conclusions were drawn as fellows: 1. Peak impact accelerations of the tibia and sacrum in downhill run were greater than that of 0% grade run, but no significant between conditions. Peak shock of PSD resembled also in pattern of peak impact acceleration. The wave of impact shock attenuation between the tibia and sacrum decreased with increasing grade, but didn't find a significant difference between grade conditions. 2. Adduction/abduction, flexion/extention, and internal/external rotation of the ankle and knee joints at support phase between grade conditions didn't make much difference. 3. At grade of 7% and 15%, there were relationship between the knee of the flexion/extension movement and peak impact acceleration during heel strike and found also it in the ankle of plantar/dorsiflexion at grade of 15%.

Implementation of Rule-based Smartphone Motion Detection Systems

  • Lee, Eon-Ju;Ryou, Seung-Hui;Lee, So-Yun;Jeon, Sung-Yoon;Park, Eun-Hwa;Hwang, Jung-Ha;Choi, Doo-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.45-55
    • /
    • 2021
  • 스마트폰에 내장된 각종 센서를 통해 획득할 수 있는 정보는 사용자의 움직임, 상황 등을 파악하고 분석하는데 유용하게 활용될 수 있다. 본 논문에서는 스마트폰의 가속도 센서와 자이로스코프 센서에서 얻은 정보를 분석하여 'I', 'S', 'Z' 모션을 인식하는 두 가지 규칙기반 시스템을 제안한다. 먼저, 각 모션에 대한 가속도 및 각속도의 특성을 분석한다. 이를 기반으로 두 가지 종류의 규칙기반 모션 인식 시스템을 제안하고 이를 안드로이드 앱으로 구현하여 각 모션에 대한 성능을 비교한다. 두 가지 규칙기반시스템은 각 모션에 대해서 90% 이상의 인식률을 보이며 앙상블을 이용한 규칙기반 시스템은 다른 시스템보다 향상된 성능을 보인다.

The AUV design based on component modeling and simulation

  • Kebriaee, Azadeh;Nasiri, Hamidreza
    • Ocean Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.83-97
    • /
    • 2012
  • In the present work, design procedure and computer simulation of an AUV are documented briefly. The design procedure containing the design of propulsion system and CFD simulation of hydrodynamics behavior of the hull leads to achieve an optimum mechanical performance of AUV system. After designing, a comprehensive one dimensional model including motor, propeller, and AUV hull behavior simulates the whole dynamics of AUV system. In this design, to select the optimum AUV hull, several noses and tails are examined by CFD tools and the brushless motor is selected based on the first order model of DC electrical motor. By calculating thrust and velocity in functional point, OpenProp as a tool to select the optimum propeller is applied and the characteristics of appropriate propeller are determined. Finally, a computer program is developed to simulate the interaction between different components of AUV. The simulation leads to determine the initial acceleration, final velocity, and angular velocity of electrical motor and propeller. Results show the final AUV performance point is in the maximum efficiency regions of DC electrical motor and propeller.